

2011 MY OBD System Operation

Summary for 6.7L Diesel Engines

Table of Contents

Intro	oduction – OBD-II and EMD	5
	OBD-II Systems	5
	EMD Systems	5
Gen	eral Description 6.7L Diesel Engine	8
	System Schematic 6.7L Chassis Certified	9
NO	N-METHANE HYDROCARBON (NMHC) CONVERTING CATALYST MONITOR	.13
	Diesel Oxidation Catalyst Efficiency Monitor	.13
	Diesel Oxidation Catalyst DPF Regeneration Assistance Monitor	.14
	Diesel Oxidation Catalyst SCR Assistance Monitor	.14
OXI	DES OF NITROGREN (NOx) CONVERTING CATALYST MONITORING	.15
	Selective Catalyst Reduction Catalyst Efficiency Monitor	.15
	Selective Catalyst Reduction Feedback Control Monitors	.17
	Selective Catalyst Reduction Tank Level	.18
MIS	FIRE MONITOR	.19
	Misfire System Overview	.19
	Misfire Algorithm Processing	.19
FUE	EL SYSTEM MONITOR	.21
	Fuel System Overview	.21
	Fuel Rail Pressure Sensor Circuit Check	.21
	Fuel Rail Pressure Sensor Range Check:	.23
	Injector Code Missing/Invalid:	.30
	Fuel system pressure control:	.31
	Fuel Rail Pressure Monitors:	.31
	Injection Timing / Injection quantity	.32
	Zero Fuel Calibration:	.32

Feedback control:	34
EXHAUST GAS SENSOR MONITOR	
Air-Fuel Ratio Sensors: Tailpipe NOx and O2 Sensor Control Module	
EXHAUST GAS RECIRCULATION (EGR) SYSTEM MONITOR	44
EGR Rate System Monitor	44
EGR Cooler / EGR Cooler Bypass Monitor	45
EGR System Slow Response	48
EGR Closed-loop Control Limits Monitor	48
Mass Airflow Closed-loop Control Limits Monitor	49
BOOST PRESSURE CONTROL SYSTEM MONITORING	51
Intrusive Turbo Position and Response Monitoring	51
Intrusive Wastegate Monitoring	53
Functional Overboost Monitoring	54
Functional Underboost Monitoring	55
Threshold Underboost Monitoring	56
Charge Air Cooler Monitoring	57
PARTICULATE MATTER (PM) FILTER MONITORING	58
DPF Filter Efficiency and Missing Substrate Monitors	58
DPF Frequent Regeneration Monitor	59
DPF Incomplete Regeneration Monitor	60
DPF Feedback Control Monitors	61
DPF Restriction Monitor	62
CRANKCASE VENTILATION (CV) SYSTEM MONITOR	63
ENGINE COOLING SYSTEM MONITORING	65
Thermostat Monitor	65
Primary Coolant Temp Dynamic Monitoring	68
Secondary Coolant Temp Dynamic Monitoring	69
COLD START EMISSION REDUCTION STRATEGY MONITORING	70
Cold Start Emission Reduction System Monitor	70
Cold Start Emission Reduction Component Monitor	71
Engine Sensors	74
Air Temperature Rationality Test	74
Barometric Pressure and Manifold Absolute Pressure	82
Turbine Upstream Pressure Sensor Plausibility Checks	84
Upstream Turbine Pressure Sensor Signal Range Check	85
EGR Valve Position Sensor	
Throttle Position Sensor	
EGR Downstream Temperature Sensor Dynamic Plausibility Check	
Engine Coolant & Engine Oil Correlation	88

Cam and Crank Sensor:	
Fan:	
Mass Air Meter	
MAF Rationality Check	
DEF Pressure Sensor	
Reductant Pressure Sensor Signal Range Check	
Reductant Pressure Plausibility Check before Start-up	
DEF Pressure Build-up Check at Start-up	
DEF System Pressure Control	
Reductant Tank Level Sensor	
Reductant Tank Level Sensor Circuit Checks	
Reductant Tank Level Sensor Plausibility Check	
Reductant Tank Temperature Sensor	
Exhaust Gas Temperature Sensor Rationality Test	
Diesel Particulate Filter Pressure Sensor Rationality Test	
Diesel Particulate Filter Pressure Offset Test	
Engine Outputs	
EGR Valve Actuator Signal Range Check	
EGR Valve Actuator Jammed Detection	
Throttle Valve Actuator Signal Range Check	
Throttle Valve Actuator Jammed Detection	
ECB Valve Actuator Signal Range Check	
Urea System Pressure Control	
Reductant Pump Motor	
Reductant Dosing Valve (Injector)	
Reverting Valve	
Urea Heaters	
Lack of Communication Codes:	
Glow Plugs	
Turbocharger Actuator Signal Range Check	141
Wastegate Vacuum Solenoid Signal Range Check	141
Miscellaneous ECU Errors:	
Comprehensive Component Monitor - Transmission	
Transmission Inputs	
Transmission Outputs	
6R140 (RWD) Transmission with external PCM or TCM	
On Board Diagnostic Executive	
Exponentially Weighted Moving Average	
I/M Readiness Code	

Serial Data Link MIL Illumination	156
Calculated Load Value	157

Introduction – OBD-II and EMD

OBD-II Systems

California OBD-II applies to all California and "Green State" gasoline engine vehicles up to 14,000 lbs. Gross Vehicle Weight Rating (GVWR) starting in the 1996 MY and all diesel engine vehicles up to 14,000 lbs. GVWR starting in the 1997 MY.

"Green States" are states that have adopted California emission regulations, starting in the 1998 MY. Green States receive California vehicles for all light duty passenger cars and trucks. Green States are Massachusetts, New York, Vermont for 2000, Maine for 2001, Rhode Island, Connecticut, Pennsylvania for 2008, New Jersey, Washington, Oregon for 2009, Maryland, New Mexico for 2011, Arizona for 2012, and Florida for 2013.

Federal OBD-II applies to all gasoline engine vehicles up to 8,500 lbs. GVWR starting in the 1996 MY and all diesel engine vehicles up to 8,500 lbs. GVWR starting in the 1997 MY.

Starting in the 2004 MY, Federal vehicle over 8,500 lbs. are required to phase in OBD-II. Starting in 2004 MY, gasoline-fueled Medium Duty Passenger Vehicles (MDPVs) are required to have OBD-II. By the 2006 MY, all Federal vehicles from 8,500 to 14,000 lbs. GVWR will have been phased into OBD-II.

OBD-II system implementation and operation is described in the remainder of this document.

EMD Systems

Engine Manufacturer Diagnostics (EMD) applies to all 2007 MY and beyond California gasoline-fueled and diesel fueled on-road heavy duty engines used in vehicles over 14,000 lbs Gross Vehicle Weight Rating (GVWR). EMD systems are required to functionally monitor the fuel delivery system, exhaust gas recirculation system, particulate matter trap, as well as emission related ECM input inputs for circuit continuity and rationality, and emission-related outputs for circuit continuity and functionality. EMD requirements are very similar to OBD-I system requirements. As such, OBD-I system philosophy will be employed, the only change being the addition of some comprehensive component monitor (CCM) rationality and functionality checks.

EMD vehicles use the same PCM, CAN serial data communication link, J1962 Data Link Connector, and PCM software as the corresponding OBD-II vehicle. The only difference is a different PCM calibration.

The following list indicates what monitors and functions have been altered from OBD-II for EMD calibrations:

Monitor / Feature	Calibration
NON-METHANE HYDROCARBON (NMHC) CONVERTING CATALYST	
MONITOR	
Diesel Oxidation Catalyst Efficiency Monitor	Same as OBD-II but does not set the MIL.
Diesel Oxidation Catalyst DPF Regeneration Assistance Monitor	Same as OBD-II
Diesel Oxidation Catalyst SCR Assistance Monitor	Same as OBD-II
OXIDES OF NITROGREN (NOx) CONVERTING CATALYST MONITORING	
Selective Catalyst Reduction Catalyst Efficiency Monitor	Same as OBD-II.
Selective Catalyst Reduction Feedback Control Monitors	Same as OBD-II.
Selective Catalyst Reduction Tank Level	Same as OBD-II.
Misfire Monitor	Same as OBD-II but does not set the MIL.
FUEL SYSTEM MONITOR	
Fuel Rail Pressure Sensor Circuit Check	Same as OBD-II
Fuel Rail Pressure Sensor Range Check:	Same as OBD-II
Injector Code Missing/Invalid:	Same as OBD-II
Fuel system pressure control:	Same as OBD-II
Fuel Rail Pressure Monitors:	Same as OBD-II
Injection Timing / Injection quantity - Zero Fuel Calibration:	Same as OBD-II
Feedback control:	Disabled
EXHAUST GAS SENSOR MONITOR	
Air-Fuel Ratio Sensors: Tailpipe NOx and O2 Sensor Control Module	Same as OBD-II
EXHAUST GAS RECIRCULATION (EGR) SYSTEM MONITOR	Same as OBD-II
	Increased threshold from OPD II
EGR Rate System Monitor	Increased threshold from OBD-II
EGR Cooler / EGR Cooler Bypass Monitor	Same as OBD-II but does not set MIL.
EGR System Slow Response	Disabled
EGR Closed-loop Control Limits Monitor	Disabled
Mass Airflow Closed-loop Control Limits Monitor	Disabled
BOOST PRESSURE CONTROL SYSTEM MONITORING	
Intrusive Turbo Position and Response Monitoring	Same as OBD-II
Intrusive Wastegate Monitoring	Same as OBD-II
Functional Overboost Monitoring	Same as OBD-II
Functional Underboost Monitoring	Same as OBD-II
Threshold Underboost Monitoring	Same as OBD-II but with Increased
	Thresholds.
Charge Air Cooler Monitoring	Same as OBD-II
PARTICULATE MATTER (PM) FILTER MONITORING	
	Same as OBD-II
DPF Filter Efficiency and Missing Substrate Monitors	Disabled
DPF Frequent Regeneration Monitor	Disabled Disabled
DPF Incomplete Regeneration Monitor	
DPF Feedback Control Monitors	Same as OBD-II
DPF Restriction Monitor	
Crank Case Ventilation	Same as OBD-II but does not set the MIL.
Cold Start Emission Red Monitor	Same as OBD-II, However, since the
	dynamometer certified P473 vehicles do
	no utilize a cold start strategy it is disabled.

Comprehensive Component Monitor	All circuit checks for components supporting other EMD monitors, as well as those for some of the other components, are the same as OBD-II.
Glow Plug Resistance Monitor	Same as OBD-II but does not set the MIL.
Idle Fuel Monitor	Disabled
Idle Torque Monitor	Disabled
Communication Protocol and DLC	Utilizes CAN communication, same as OBD-II, all generic and enhanced scan tool modes work the same as OBD-II but reflect the EMD calibration that contains fewer supported monitors. "OBD Supported" PID indicates EMD.
MIL Control	Same as OBD-II

EMD system implementation and operation is a subset of OBD-II and is described in the remainder of this document.

General Description 6.7L Diesel Engine

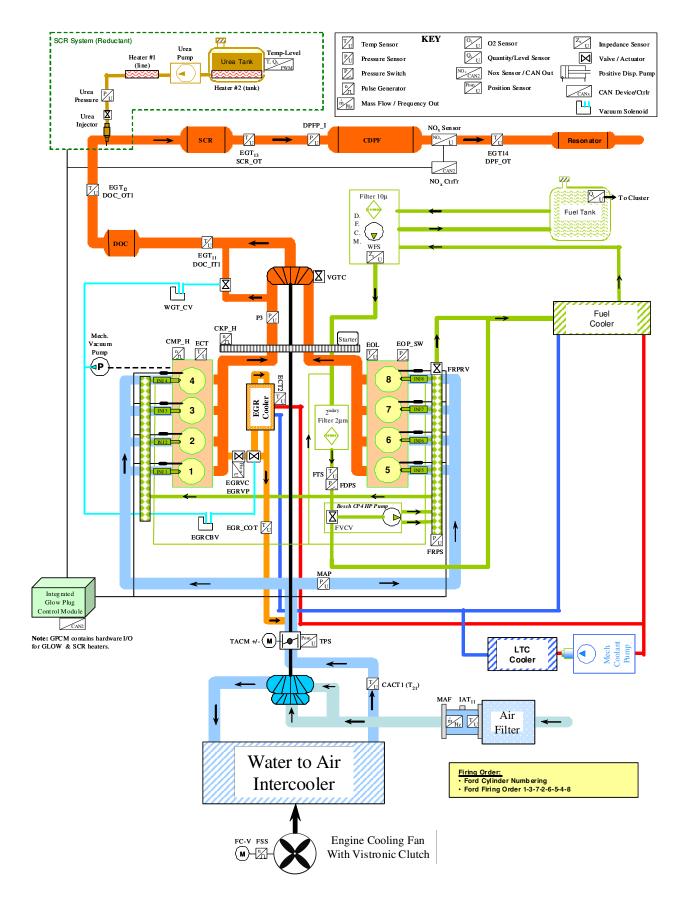
The 6.7L is a V8 engine designed to meet customer expectations of high horsepower and torque with exceptional fuel economy and low NVH. It must do this while meeting the tough emissions standards set by the EPA and CARB.

Some of the technologies employed to meet these diverse criteria include a Variable Geometry Turbocharger (VGT), common rail fuel injection system, electronically controlled, cooled EGR, a diesel oxidation catalyst (DOC), Selective Catalytic Reduction catalyst (SCR), Diesel Exhaust Fluid (DEF) injection system, and a diesel particulate filter (DPF).

The system schematic on the next page shows the path of the air as it is compressed by the turbocharger, cooled by the air-to-coolant intercooler, and mixed with the cooled EGR gases. The state of this compressed and heated air is sensed by the manifold absolute pressure (MAP) sensor just before it enters the cylinders and the two temperature sensors that represent Charge Air Cooler Outlet temperature (CACT1) and EGR Cooler outlet temperature (EGRCOT). The exhaust gas pressure is measured by the exhaust backpressure (EP) sensor before it exits through the turbocharger. The exhaust after treatment system consists of a DOC, a SCR, a DPF and a muffler.

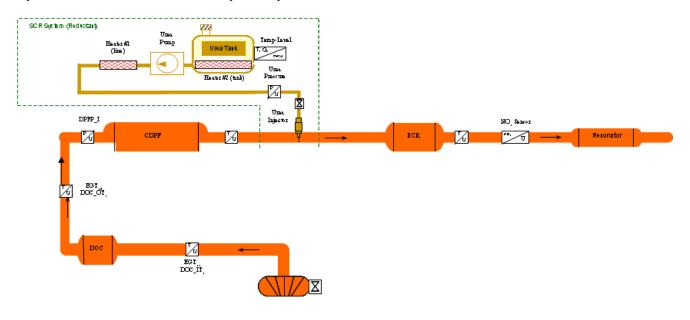
An electronic, proportional valve controls EGR rates with an integral position sensor (EGRP). Flows are determined by valve position and the amount that backpressure exceeds boost pressure. An EGR throttle (EGRTP) is used for regeneration control as well as to optimize the boost pressure vs. backpressure levels.

Fuel injection pressure is measured by the high-pressure fuel rail sensor (FRP). Injection pressure is controlled by the high pressure pump and two regulating valves, a Pressure Control Valve (PCV), and a Fuel Metering Unit (MeUn), formerly known as Volume Control Valve (VCV).

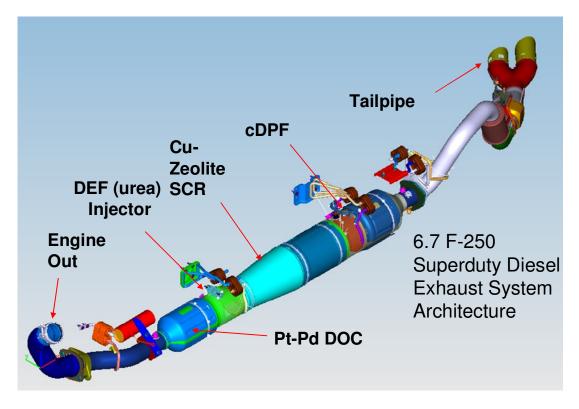

Engine speed (N) and crankshaft position are determined by the crankshaft position sensor (CKP) which senses a 60 minus 2 tooth target wheel. Camshaft position is determined by the camshaft position sensor (CMP), which senses the profile of a multiple lobed camshaft.

Atmospheric pressure is determined by the Barometric Pressure sensor (BARO) mounted internally in the Engine Control Module (ECM).

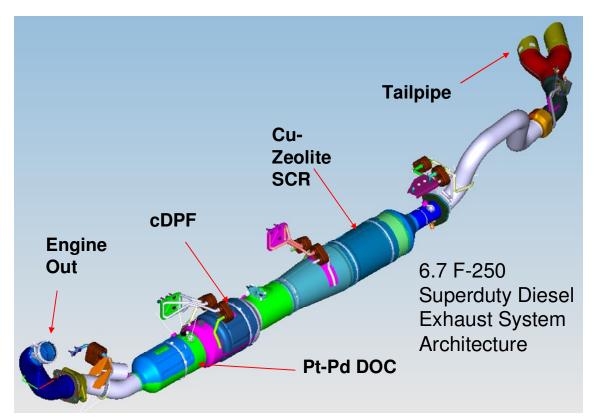
During engine operation, the ECM calculates engine speed from the crankshaft position sensor. The ECM controls engine operation by controlling the piezo injector opening and closing times as well as the pressure at which the fuel is injected, thereby controlling fuel quantity and timing. Simultaneously, airflow is modulated by controlling the turbocharger vane position.


Fuel quantity is controlled by injector "on time" (pulse width) and the fuel rail pressure. Desired engine speed is determined from the position of the accelerator pedal.

System Schematic 6.7L Chassis Certified



Actuators	Acronym	Sensors	Acronym
	DEF (F	Reductant) System	
DEF Pump		DEF Temp-Level Combination Sensor	
DEF Tank Heater	Heater #1	DEF Pressure Sensor	
DEF Pump & Line Heater	Heater #2		
DEF Injector	10000 #1		
DEI Injector	NOv	Sensor System	
NO: Core or Constrallor	NUX		
NOx Sensor Controller		NOx Sensor	
		oost System	
Variable Geometry Turbo Control	VGTC	Manifold Pressure Sensor	MAP
Turbocharger Wastegate	WGT_CV	Charge Air Cooler Temperature	CACT1
Vacuum Control Solenoid		at Outlet	
		Mass Airflow Sensor	MAF
		Intake Air Temperature	IAT11
		Exhaust Back Pressure	EBP or P3
	Exhaust Ga	s Recirculation System	
Exhaust Gas Recirculation Valve	EGRVC	Exhaust Gas Recirculation Valve	EGRVP
Control		Position	
Exhaust Gas Recirculation	EGRCBV	Exhaust Gas Recirculation	EGR_COT
Cooler Bypass Vacuum Control Solenoid		Cooler Gas Temperature at Outlet	
EGR Throttle Motor Control	TACM	EGR Throttle Position Sensor	TPS
		Fuel System	
High Pressure Fuel Volume	FVCV	High Pressure Fuel Rail Pressure	FRPS
Control Valve		Sensor	-
High Pressure Fuel Pressure Relief Valve	FRPRV	Low Pressure Fuel Delivery Switch	FDPS
Fuel Injectors	INJ 1-8	Low Pressure Fuel Temperature Sensor	FTS
Low Pressure Fuel Pump and	DFCM		
Filters			
Water In Fuel Sensor	WFS		
Fuel Tank Level Sensor	W 18		
Fuel Talik Level Sensol		w Dhun Cuntern	
	Giù	w Plug System	
Glow Plugs			
Glow Plug Controller	GPCM		
	Ex	haust System	
		Diesel Oxidation Inlet Temperature	DOC_IT or EGT11
		Diesel Oxidation Outlet	DOC_OT or EGT12
		Temperature	
		Selective Catalytic Reduction	SCR_OT or EGT 13
		Outlet Temperature	
		Upstream Catalyzed Diesel Particulate Filter Pressure	DPFP
		Downstream Diesel Particulate Filter Temperature	DPF_OT or EGT 14
	Fi	ngine System	
Electric Clutch Fan Controller	FC-V	Cam Shaft Position Sensor	CMP
	10-1	Engine Coolant Temperature	ECT
		Engine Coolant Temperature	ECI
		Crank Shaft Position Sensor	CKP
		Engine Oil Temperature	EOT
		Engine Oil Pressure Switch	EOP_SW
		Low Temperature Coolant Loop Temperature	ECT2
		Engine Fan Speed Sensor	FSS
		Environmental Temperature	ENV_T
		Sensor	


The dynamometer certified application of the 6.7L diesel engine has a similar layout to the chassis certified version. The main differences are the use of a single compressor stage on the boost system, lack of a wastegate, and a change in the order of the aftertreatment systems.

Dynamometer certified 6.7L exhaust system layout.

2011 MY 6.7L V8 Diesel Exhaust Features, Medium Duty, Dyno Cert

NON-METHANE HYDROCARBON (NMHC) CONVERTING CATALYST MONITOR

Diesel Oxidation Catalyst Efficiency Monitor

The Diesel Oxidation Catalyst (DOC) is monitored to ensure it is capable of converting hydrocarbons and carbon monoxide. The monitor is only run during aftertreatment regeneration events. After entering regen, there is a short delay to allow the DOC to achieve light-off temperature. Then the exotherm is monitored for a short period of time and normalized versus an expected exotherm (a function of post-injection fuel quantity and ambient air temp). The exotherm is defined as the DOC outlet temperature (EGT12) minus the DOC inlet temperature (EGT11). The normalized exotherm is filtered for a short period of time, and then compared to a threshold. If the normalized exotherm is below the threshold, a fault is indicated. No other preconditioning is required.

DOC Efficiency Monitor Summary:			
DTCs	P0420 – Catalyst System Efficiency Below Threshold		
Monitor execution	Once per driving cycle during which an active DPF regeneration occurs		
Monitor Sequence	None		
Sensors OK	EGT11, EGT12, TCO, MAF, IAT		
Monitoring Duration	4 minutes		

Typical DOC Efficiency Monitor Entry Conditions:			
Entry condition	Minimum	Maximum	
DPF regeneration event			
Engine speed	1000 rpm	3000 rpm	
Torque set point	100 Nm	1000 Nm	
Engine coolant temperature	70 deg C		
DOC inlet temperature	200 deg C	500 deg C	
PTO inactive			

Typical DOC Efficiency Monitor Malfunction Threshold:

Normalized exotherm is less than 40% of the expected exotherm for 60 seconds

Diesel Oxidation Catalyst DPF Regeneration Assistance Monitor

The DOC is monitored to ensure it is capable of generating a sufficient exotherm to allow DPF regeneration events by burning the soot which is stored in the Diesel Particulate Filter (DPF). This is accomplished with the same diagnostic described above for the DOC Catalyst Efficiency Monitor.

Diesel Oxidation Catalyst SCR Assistance Monitor

The DOC in this system is not utilized to provide any changes in the feedgas constituency that would aid in the proper SCR operation.

OXIDES OF NITROGREN (NOx) CONVERTING CATALYST MONITORING

Selective Catalyst Reduction Catalyst Efficiency Monitor

The SCR catalyst is monitored to ensure it is capable of NOx conversion. The concentration of NOx upstream of the SCR is calculated based on a model. NOx concentration downstream of the SCR is measured with a NOx sensor. Using these concentrations, the cumulative efficiency of the SCR catalyst is calculated and compared to a threshold. If the cumulative efficiency is below this threshold for a sufficient period of time, a fault will be indicated.

The reductant, Diesel Exhaust Fluid (DEF), which is used as part of the SCR catalyst reaction, is monitored to ensure the tank is not refilled with an improper reductant. Upon detection of a refill event, the monitor is activated. After the SCR Catalyst Efficiency Monitor has completed and the SCR has been determined to be functional, the efficiency monitor continues to calculate the cumulative efficiency of the system. Each subsequent value for cumulative efficiency is included in two filtering routines, one for short term efficiency and the other for long term efficiency. If the difference between the two filtered efficiencies becomes greater than a threshold, a fault is indicated. the short term efficiency needs to be less than 0.20 and the delta between short and long term efficiency needs to be greater than 0.10.

Monitor Summary:	
DTCs	P20EE – SCR NOx Catalyst Efficiency Below Threshold
	P207F – Reductant Quality Performance
Monitor execution	P20EE - Once per driving cycle
	P207F – After detection of a Diesel Exhaust Fluid refill
Monitor Sequence	P20EE test followed by P207F test
Sensors OK	NOx, EGT12, EGT13, ECT, DEF injection system, MAF, BP, O2, DPFP, EGR system
Monitoring Duration	P20EE – 2 Minutes, P207F – Dependent on driving conditions

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
SCR Feedback Control Enabled		
Short term efficiency		0.2
Short term to long term efficiency delta	0.1	
Regeneration Cycle Not Requested		
Engine coolant temperature	70 deg C	
Ambient air temperature	-6.7 degC	
Barometric Pressure	82.5 kPa	120 kPa
Engine Speed	1000 rpm	3000 rpm
Torque Transients	-30 N-m/s,	+10 N-m/s
Exhaust Space Velocity	5000	120,000
SCR Inlet temp	200 degC	350 degC
DEF storage	30% understored	40% overstored
Diesel Exhaust Fluid refill detected (only for Reductant Quality Performance monitor)		

Typical Malfunction Thresholds:

P20EE: If the cumulative efficiency of the SCR Catalyst is less than 25% for approx 60 seconds., a fault is indicated.

P207F: the short term Nox efficiency needs to be less than 0.20 and the delta between short and long term efficiency needs to be greater than 0.10. This generally occurs in a highway drive cycle within 15 miles when conditions are present.

Selective Catalyst Reduction Feedback Control Monitors

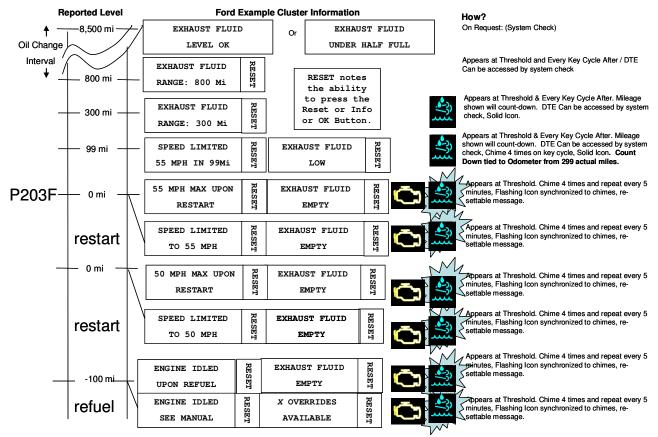
The SCR system is monitored to ensure the proper closed loop control of the reductant injection. As part of the reductant injection control, a correction factor is adapted to account for long term drift of the system (injector, etc). This correction factor is monitored continuously. If the correction factor reaches a threshold in the positive or negative direction for a sufficient period of time, a fault will be indicated.

A SCR Time to Closed Loop monitor is implemented to ensure that SCR feedback occurs when expected. Once entry conditions are met, a timer is incremented. If the fraction of time in closed loop control is less than a threshold, a fault is indicated.

Monitor Summary:	
DTCs	P249D – SCR Feedback at Minimum Limit
	P249E – SCR Feedback at Maximum Limit
	P249C – SCR Time to Closed Loop
Monitor execution	Continuous
Monitor Sequence	None
Sensors OK	NOx, EGT12, EGT13,TCO, EGT11 EGT14, MAF, BP, IAT, DPFP, and EGR system
Monitoring Duration	5 minutes

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
Low Temp Adaptation is enabled (Feedback monitor only)		
Engine speed	800 rpm	3000 rpm
Torque set point	0 Nm	1000 Nm
Barometric pressure	75 kPa	
Ambient temperature	-6.7 deg C	
Engine coolant temperature	70 deg C	
SCR temperature	160 deg C	900 deg C

Typical Malfunction Thresholds:


P249D: If the correction factor is clipped at its minimum value for 30 seconds then a fault is indicated.

P249E: If the correction factor is clipped at its maximum value for 5 minutes then a fault is indicated.

P249C: The error is set as soon as the fraction of closed loop operation vs expected is less than the threshold. The monitor needs to run for 120 seconds to call it complete.

Selective Catalyst Reduction Tank Level

The SCR system is monitored to ensure the level of DEF in the reductant tank is sufficient to achieve system performance. As part of the DEF level customer warning system, a fault will be recorded when the calculated mileage remaining of DEF is equal to 200 miles (The discrepancy between actual and reported mileage is due to expected tolerance of calculations). The calculated mileage remaining is derived from the three pin level sensor in the tank and the volume of DEF commanded to be injected over distance. This fault will be erased once the system senses a DEF refill event.

DEF Override countdown 5-4-3-2-1-NO

Monitor Summary:	
DTCs	P203F - Reductant Level Too Low
Monitor execution	Continuous
Monitor Sequence	None
Sensors OK	DEF Temp-Level Combination Sensor

MISFIRE MONITOR

Misfire System Overview

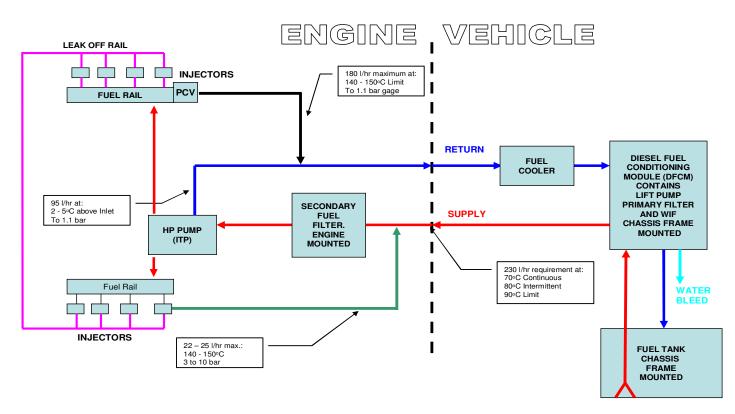
The 6.7L Diesel engine utilizes a Hall Effect sensor (CKP) that processes the edges of a 60-2 tooth stamped target wheel mounted on the crankshaft. The software gets an edge every 3 degrees and these edges are used for fuel injection timing, fuel quantity control, and the calculation of engine speed. A software algorithm corrects for irregularities of the teeth of the target wheel to improve crankshaft signal resolution. A second Hall effect sensor is used to processes the edges of the three-lobed camshaft (CMP) target. The CMP signal and the window of 2 missing teeth on the crankshaft target wheel indicate proper camshaft to crankshaft position for correct cylinder timing.

Misfire Algorithm Processing

The Misfire Monitor divides two rotations of the crankshaft into 16 half-segments, each 45 degrees of crankshaft rotation. The crankshaft speed shows increases due to combustion of fuel in the cylinder followed by decreases due to friction and other forces between cylinder firing events. The location of the half-segments is chosen such that for each cylinder one half-segment contains the majority of the higher crankshaft speed values (the "high" half-segment) and the other half-segment the majority of the lower crankshaft speed values (the "low" half-segment). The range of crankshaft speed within each half-segment is averaged. The sum of the eight low half-segment speeds is subtracted from the sum of the eight high half-segment speeds and the result divided by eight to get an average increase in speed due to combustion. The Misfire Monitor then calculates the difference between the high and low half-segments for a specific cylinder combustion event and increments a misfire counter for the firing cylinder if this value is less than 20% of the average increase in speed due to combustion described above.

The Misfire Monitor collects blocks of data consisting of 20 crankshaft rotations. Upon achieving the correct entry conditions for the Misfire Monitor as described below, the first block of 20 rotations is discarded to ensure stable idle operation. All subsequent blocks of data are counted unless vehicle conditions change such that the entry conditions are no longer satisfied. In this case, any data in the current partial block are discarded, along with the data from the block immediately prior, as stable idle cannot be ensured for these data. The Misfire Monitor completes once 50 valid blocks (1000 crankshaft revolutions) have been collected, and a fault is reported if a cylinder shows 350 or more misfire events (out of 500 possible combustion events) in this time.

Certain engine operating parameters are monitored to ensure misfire operates in a region that yields accurate misfire results. The table below outlines the entry conditions required for executing the misfire monitor algorithm.


Misfire Monitor Operation:	
DTCs	P0300 – Random Misfire Detected
	P0301 – Cylinder 1 Misfire Detected
	P0302 – Cylinder 2 Misfire Detected
	P0303 – Cylinder 3 Misfire Detected
	P0304 – Cylinder 4 Misfire Detected
	P0305 – Cylinder 5 Misfire Detected
	P0306 – Cylinder 6 Misfire Detected
	P0307 – Cylinder 7 Misfire Detected
	P0308 – Cylinder 8 Misfire Detected
Monitor execution	Continuous, at idle
Monitor Sequence	None
Sensors OK	Engine Coolant Temperature (ECT), Vehicle Speed (VSS), Crankshaft Position Sensor (CKP) Injector Faults, Injector Bank Faults
Monitoring Duration	1000 revs

Typical Misfire Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Speed (Idle)	500 rpm	1150 rpm
Engine Coolant Temperature (ECT)	-7 deg C	
Vehicle Speed (VSS)		<= 2 km/hr
Total fuel mass	2.0 mg/stroke	40.0 mg/stroke

FUEL SYSTEM MONITOR

Fuel System Overview

Fuel injection pressure is measured by the high-pressure fuel rail sensor (FRP). Injection pressure is controlled by the high pressure pump and two regulating valves, a Pressure Control Valve (PCV), and a Fuel Metering Unit (MeUn), formerly known as Volume Control Valve (VCV).

Fuel Rail Pressure Sensor Circuit Check

Fuel Rail Pressure (FRP) Sensor Circuit Check:		
DTCs	P0192 - Fuel Rail Pressure Sensor A Circuit Low Input	
	P0193 - Fuel Rail Pressure Sensor A Circuit High Input	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	Sensor Supply Voltage 1 OK (P06A6)	
Typical Monitoring Duration	0.5 sec	

Typical Fuel Rail Pressure Sensor Circuit Check Malfunction Thresholds:

FRP voltage < 0.13 V, or > 3.17 V

Fuel Rail Pressure (FRP) Rationality Check Operation:		
DTCs	P0191 - Fuel Rail Pressure Sensor "A" Circuit Range/Performance	
Monitor Execution	Immediately Prior to Crank and After Key-off	
Monitor Sequence	None	
Sensors OK	Sensor Supply Voltage 1 OK (P06A6), FRP OK (P0192, P0193)	
Typical Monitoring Duration	0.5 sec	

Typical Fuel Rail Pressure Rationality Check Entry Conditions:		
Entry condition	Minimum	Maximum
Pre-crank: engine coolant temperature	-7 deg C	
Pre-crank: time engine off	600 sec	
After key-off: fuel temperature	-40 deg C	
After key-off: time since key off	12 sec	

Typical Fuel Rail Pressure Rationality Malfunction Thresholds:

FRP voltage < 0.251 V (-40 bar) or > 0.384 V (68 bar).

Fuel Rail Pressure Sensor Range Check:

When fuel rail pressure is controlled by the Pressure Control Valve, the Pressure Control Valve signal needed to maintain rail control is compared to an expected value. An adaptation factor for the Pressure Control Valve is calculated from the difference between observed and expected control values. Inaccuracy in the Rail Pressure Sensor Signal Slope is a potential cause of inaccuracy in the needed Pressure Control Valve signal along with physical errors in the PCV itself. If the adaptation factor required for the Pressure Control Valve exceeds a minimum or maximum control limit, then a code is set for rail pressure slope out of acceptable range.

Fuel Rail Pressure (FRP) Range Check Operation:		
DTCs	P016D - Excessive Time To Enter Closed Loop Fuel Pressure Control	
	P228E - Fuel Pressure Regulator 1 Exceeded Learning Limits - Too Low	
	P228F - Fuel Pressure Regulator 1 Exceeded Learning Limits - Too High	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	Sensor Supply Voltage 1 (P06A6), FRP (P0192, P0193)	
Typical Monitoring Duration	P016D - 30 sec, P228E, P228F - 10 sec	

Typical Fuel Rail Pressure Range Check Entry Conditions:		
Entry condition	Minimum	Maximum
P016D:		
Requested rail pressure	500 bar	1200 bar
Change in requested rail pressure		30 sec
Fuel temperature		40 deg C
P228E, P228F:		
Rail pressure set point	500 bar	1200 bar
Fuel Temperature		40 deg C
Timo cinco oncino start		30 sec
Time since engine start		

Typical Fuel Rail Pressure Range Check Malfunction Thresholds:

P016D: If the system is within the adaptation operating conditions, but fails to learn a new adaptation factor after 30 seconds, this DTC is set.

P228E, P228F: If the adaptation factor exceeds positive or negative thresholds which correspond to approximately a 20% deviation in the Rail Pressure Sensor slope, a DTC is set.

Fuel Temperature Sensor Circuit Check Operation:		
DTCs	P0181 – Fuel Temperature Sensor "A" Circuit Range/Performance	
	P0182 – Fuel Temperature Sensor "A" Circuit Low	
	P0183 – Fuel Temperature Sensor "A" Circuit High	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	None	
Typical Monitoring Duration	0.5 sec	

Typical Fuel Temperature Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
P0181:		
Engine Off Time	8 hours	

Typical Fuel Temperature Sensor Circuit Check Malfunction Thresholds:

P0181: If after an 8 hour engine off soak, the difference in temperature between the fuel temperature sensor and the charge air cooler outlet temperature sensor exceeds 16 deg C or if the difference in temperature between the fuel temperature sensor and the charge air cooler outlet temperature sensor exceeds 13.2 deg C and no active block heater is detected, a DTC is set

FTS voltage < 0.0946 V (0.122.4 V = 150 deg C) or > 4.918 V (4.762 V = -40 deg C)

Volume Control Valve (VCV) Monitor Operation:		
DTCs	P0001 - Fuel Volume Regulator Control Circuit / Open	
	P0002 - Fuel Volume Regulator Control Circuit Range/Performance	
	P0003 - Fuel Volume Regulator Control Circuit Low	
	P0004 - Fuel Volume Regulator Control Circuit High	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	None	
Typical Monitoring Duration	0.3 sec	

Typical Volume Control Valve Monitor Malfunction Thresholds:

P0001 – If the volume control valve is not energized and the voltage from the volume control valve control chip is in the range 2.8 – 4.8 V (normal operation: electrical system voltage (~13.5V)

P0002 – Temperature of powerstage driver on ECM > 170 deg C

P0003 – If the volume control valve is not energized and the observed voltage from the volume control valve control chip is less than 2.8V (normal operation: electrical system voltage (~13.5V)

P0004 – If the volume control valve is energized and the current to the volume control valve exceeds 3.7A (normal operation: 2.2A maximum)

Fuel Pressure Control Valve (PCV) Monitor Operation:			
DTCs	P0089 - Fuel Pressure Regulator Performance		
	P0090 - Fuel Pressure Regulator Control Circuit		
	P0091 - Fuel Pressure Regulator Control Circuit Low		
	P0092 - Fuel Pressure Regulator Control Circuit High		
Monitor Execution	Continuous		
Monitor Sequence	None		
Sensors OK	None		
Typical Monitoring Duration	0.3 sec		

Typical Fuel Pressure Control Valve Monitor Malfunction Thresholds:

P0089 – Temperature of power stage driver on ECM is > 170 deg C

P0090 - The pressure control valve is not energized and the voltage from the pressure control valve control chip is in the range 2.8 - 4.8 V (normal operation: electrical system voltage (~13.5V)

P0091 – The pressure control valve is not energized and the voltage from the pressure control valve control chip is less than 2.8V (normal operation: electrical system voltage (~13.5V)

P0092 – The pressure control valve is energized and the observed current to the pressure control valve exceeds 5.1A (normal operation: 3.7A maximum)

Fuel Low Pressure Lift Pump Monitor Operation:				
DTCs	P0627 - Fuel Pump "A" Control Circuit / Open			
	P0628 - Fuel Pump "A" Control Circuit Low			
	P0629 - Fuel Pump "A" Control Circuit High			
	P062A – Fuel Pump "A" Control Circuit Range/Performance			
Monitor Execution	Continuous			
Monitor Sequence	None			
Sensors OK	None			
Typical Monitoring Duration	P0627, P0628, P0629 - 0.2 sec			
	P062A – 0.5 sec			

Typical Fuel Low Pressure Lift Pump Monitor Malfunction Thresholds:

P0627 - Lift pump NOT energized and the voltage from the lift pump control chip is between 2.8 - 4.8V (normal operation: electrical system voltage ~13.5V)

P0628 – Lift pump NOT energized and the voltage from the lift pump control chip is less than 2.8V (normal operation: electrical system voltage ~13.5V)

P0629 – Lift pump energized and the current to the lift pump exceeds 3.7A (normal operation: 2.2A maximum)

P062A – If the airbag deployment module sends a deployment signal and the fuel pump shows as energized via the fuel pump monitor signal or the status of the energizing request to the fuel pump and the monitoring signal from the fuel pump does not match

Fuel Injector Driver Circuit Monitor Operation:			
DTCs	P062D - Fuel Injector Driver Circuit Performance Bank 1		
	P062E - Fuel Injector Driver Circuit Performance Bank 2		
	P1291 - Injector High Side Short To GND Or VBATT (Bank 1)		
	P1292 - Injector High Side Short To GND Or VBATT (Bank 2)		
Monitor Execution	Continuous		
Monitor Sequence	None		
Sensors OK	None		
Typical Monitoring Duration	P062D, P062E – 0.5 seconds		
	P1291, P1292 – 0.2 seconds		

Typical Fuel Injector Driver Circuit Malfunction Thresholds:

P062D, P062E - Failure of injector driver of bank detected by IC Internal logic

P1291, P1292 - Short to ground or battery of bank detected by IC internal logic

DTCs	P0201 - Injector Circuit / Open - Cylinder 1	
	P0202 - Injector Circuit / Open - Cylinder 2	
	P0203 - Injector Circuit / Open - Cylinder 3	
	P0204 - Injector Circuit / Open - Cylinder 4	
	P0205 - Injector Circuit / Open - Cylinder 5	
	P0206 - Injector Circuit / Open - Cylinder 6	
	P0207 - Injector Circuit / Open - Cylinder 7	
	P0208 - Injector Circuit / Open - Cylinder 8	
	P02EE – Cylinder 1 Injector Circuit Range/Performance	
	P02EF – Cylinder 2 Injector Circuit Range/Performance	
	P02F0 – Cylinder 3 Injector Circuit Range/Performance	
	P02F1 – Cylinder 4 Injector Circuit Range/Performance	
	P02F2 – Cylinder 5 Injector Circuit Range/Performance	
	P02F3 – Cylinder 6 Injector Circuit Range/Performance	
	P02F4 – Cylinder 7 Injector Circuit Range/Performance	
	P02F5 – Cylinder 8 Injector Circuit Range/Performance	
	P1201 – Cylinder #1 Injector Circuit Open/Shorted	
	P1202 – Cylinder #2 Injector Circuit Open/Shorted	
	P1203 – Cylinder #3 Injector Circuit Open/Shorted	
	P1204 – Cylinder #4 Injector Circuit Open/Shorted P1205 – Cylinder #5 Injector Circuit Open/Shorted	
	P1205 – Cylinder #5 Injector Circuit Open/Shorted	
	P1200 – Cylinder #7 Injector Circuit Open/Shorted	
	P1208 – Cylinder #8 Injector Circuit Open/Shorted	
	P1261 – Cylinder #1 High To Low Side Short	
	P1262 – Cylinder #2 High To Low Side Short	
	P1263 – Cylinder #3 High To Low Side Short	
	P1264 – Cylinder #4 High To Low Side Short	
	P1265 – Cylinder #5 High To Low Side Short	
	P1266 – Cylinder #6 High To Low Side Short	
	P1267 – Cylinder #7 High To Low Side Short	
	P1268 – Cylinder #8 High To Low Side Short	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	None	
Typical Monitoring Duration	P0201 – P0208 – 0.3 seconds.	
-	P02EE – P2F5 – 0.3 seconds.	
	P1201 – P1208 – 0.3 seconds.	
	P1261 – P1268 – 0.3 seconds.	

Typical Injection Circuits Malfunction Thresholds:

P0201 – P0208 – Injector open circuit detected by IC internal logic	
P02EE – P02F5 – Implausible injector response detected by IC internal logic	
P1201 – P1208 – Injector short circuit detected by IC internal logic	
P1261 – P1268 – Injector high side to low side short circuit detected by IC internal logic	

Injector Code Missing/Invalid:

Injector Code Monitor Operation:		
DTCs	 P268C – Cylinder 1 Injector Data Incompatible P268D – Cylinder 2 Injector Data Incompatible P268E – Cylinder 3 Injector Data Incompatible P268F – Cylinder 4 Injector Data Incompatible P2690 – Cylinder 5 Injector Data Incompatible P2691 – Cylinder 6 Injector Data Incompatible P2692 – Cylinder 7 Injector Data Incompatible P2693 – Cylinder 8 Injector Data Incompatible 	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	None	
Typical Monitoring Duration	0.5 seconds	

Typical Injector Code Monitor Malfunction Thresholds:

P268C – P2693: Each injector has a code stored in EEPROM that provides information to the ECU about deviations of that injector from a theoretical average injector. If the injector code is missing or invalid, a DTC is set.

Fuel system pressure control:

Fuel Rail Pressure Monitors:

The pressure in the fuel rail is controlled by a closed-loop control strategy that is always active during vehicle operation. Two controllers may be used to control the rail pressure: the Pressure Control Valve and the Volume Control Valve. The Pressure Control Valve is used to control pressure at engine start and when fuel temperature is low. The Volume Control Valve is used to control fuel pressure under most other conditions. A third operation mode allows fuel rail pressure to be controlled by a combination of the Pressure Control Valve and Volume Control Valve; this mode is typically used to transition from control by one device to the other and in regimes where low fuel volume is required.

The fuel rail pressure is controlled either with the Pressure Control Valve, the Volume Control Valve, or both, depending upon engine operation condition. The high and low Fuel Rail Pressure Monitors detect when there is an excessive deviation from the desired fuel pressure when the controller has reached a control limit or when the minimum or maximum allowable rail pressures are exceeded. A code is set for Fuel Pressure Regulator Performance when the system is using both the Pressure Control Valve and the Volume Control Valve to regulate rail pressure and the rail pressure becomes too high, indicating a problem with the Pressure Control Valve.

Fuel Rail Pressure (FRP) Monitor Operation:		
DTCs	P0087 - Fuel Rail/System Pressure - Too Low	
	P0088 - Fuel Rail/System Pressure – Too High	
	P0089 - Fuel Pressure Regulator Performance	
	P0093 – Fuel System Leak Detected – Large Leak	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	FRP (P0191, P0192, P0193)	
Typical Monitoring Duration	P0087, P0088 – 1.4 sec	
	P0089 - 1.0 sec	
	P0093 – 2 sec	

Typical Fuel Rail Pressure Monitor Malfunction Thresholds:

P0087: If the commanded rail pressure exceeds the measured rail pressure by 250 bar for 1.4 sec or if the measured rail pressure drops below 140 bar for 0.3 sec

P0088: If the measured rail pressure exceeds the commanded rail pressure by 250 bar for 1.4 sec or if the measured rail pressure exceeds 2150 bar for 0.3 sec

P0089: If measured rail pressure exceeds commanded rail pressure by 490 bar for 1.0 sec

P0093: If the set point needed for the volume control valve to maintain desired rail pressure exceeds 13,500 mm3/sec at idle or if the set point needed for the volume control valve to maintain desired rail pressure is 40% greater than the volume control valve set point as calculated from the requested injection quantity when not at idle

Injection Timing / Injection quantity

Zero Fuel Calibration:

Zero Fuel Calibration (ZFC) is an algorithm used to detect deviations in individual injector performance from nominal. In an overrun/decel fuel shut-off condition, fuel rail pressure is set to 300 bar and small injections are made from a single injector. The observed acceleration in crankshaft speed is detected and compared to the expected acceleration. If the observed acceleration deviates from the expected acceleration by more than 50%, then an additional routine is called adjusts the injection energizing time until observed acceleration matches expected. This information is then used to adjust all pilot injections on that injector to ensure correct fuel delivery. If the absolute energizing time observed for the test injection to yield the expected acceleration exceeds minimum or maximum limits, a code is set.

Zero Fuel Calibration (ZFC)	Monitor Operation:
DTCs	 P02CC – Cylinder 1 Fuel Injector Offset Learning at Min Limit P02CD – Cylinder 1 Fuel Injector Offset Learning at Max Limit P02CE – Cylinder 2 Fuel Injector Offset Learning at Min Limit P02CF – Cylinder 2 Fuel Injector Offset Learning at Max Limit P02D0 – Cylinder 3 Fuel Injector Offset Learning at Max Limit P02D1 – Cylinder 3 Fuel Injector Offset Learning at Max Limit P02D2 – Cylinder 4 Fuel Injector Offset Learning at Max Limit P02D3 – Cylinder 4 Fuel Injector Offset Learning at Max Limit P02D4 – Cylinder 5 Fuel Injector Offset Learning at Min Limit P02D5 – Cylinder 5 Fuel Injector Offset Learning at Min Limit P02D6 – Cylinder 6 Fuel Injector Offset Learning at Min Limit P02D7 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D8 – Cylinder 7 Fuel Injector Offset Learning at Max Limit P02D9 – Cylinder 7 Fuel Injector Offset Learning at Max Limit P02D9 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D9 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D9 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D9 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D4 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D5 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D8 – Cylinder 7 Fuel Injector Offset Learning at Min Limit P02D4 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D5 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D4 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D5 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D6 – Cylinder 8 Fuel Injector Offset Learning at Min Limit P02D7 – Cylinder 8 Fuel Injector Offset Learning at Min Limit
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	
Typical Monitoring Duration	P262A – 5 sec, all other DTCs 30 sec

Typical Zero Fuel Calibration (ZFC) Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
P02CC, P02CD, P02CE, P02CF, P02D0, P02D1, P02D2, P02D3, P02D4, P02D5, P02D6, P02D7, P02D8, P02D9, P02DA, P02DB, P262A:		
Intake air temperature	0 deg C	
Fuel temperature	10 deg C	75 deg C
Engine coolant temperature	50 deg C	
System voltage	10 V	
Time in overrun/decel fuel shut-off		30 sec
Engine speed	890 rpm	1610 rpm
Boost pressure	750 mbar	
Accelerator pedal		2 %
Transmission gear (no gear change)	4 th	6 th
Torque converter locked		
Fuel Balance Control wheel learn complete		
Note: these are the entry conditions for the base function. The monitor runs whenever the base function runs.		

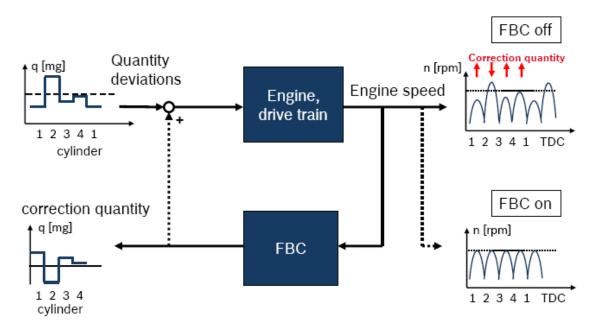
Typical Zero Fuel Calibration (ZFC) Monitor Malfunction Thresholds:

P02CC, P02CE, P02D0, P02D2, P02D4, P02D6, P02D8, P02DA:

If the observed energizing time for the test injection is 156 us or more lower than the target 430 us energizing time for the given injector, the code is set.

P02CD, P02CF, P02D1, P02D3, P02D5, P02D7, P02D9, P02DB:

If the observed energizing time for the test injection is 254 us or more higher than the target 430 us energizing time for the given injector, the code is set.


P262A:

While in Zero Fuel Calibration mode, if the speed increase signal corresponding to a cylinder in which a test fuel injection is not programmed is higher than the speed increase signal corresponding to the cylinder in which the test fuel injection is programmed, the code is set.

Feedback control:

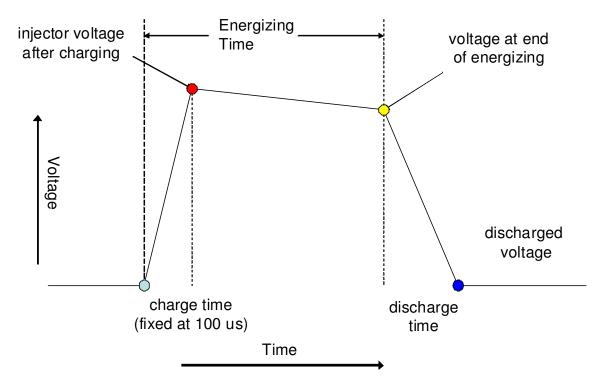
Fuel Balancing Control:

Fuel Balancing Control is an algorithm designed to reduce differences in injected fuel quantity from cylinder to cylinder. The increase in crankshaft speed due to individual cylinder combustion events is measured. The amount of fuel injected to each cylinder is then adjusted up or down to minimize the difference in increase in crankshaft speed from cylinder to cylinder. The total amount of fuel injected among all cylinders remains constant. The concept is shown in the graphic below.

FBC operates in closed-loop control in an engine speed range of 500-1150 rpm, and a commanded injection quantity of 3.5 - 50 mg/stroke. The maximum allowed correction in fuel quantity for an individual cylinder is given by the following table.

Fuel Balancing Control (FBC) Control Limits:			
Injection quantity requested before FBC correction (mg/stroke)			
Maximum allowable FBC correction (mg/stroke):	3.5	7.5	30
	2.3	5	10

Fuel Balancing Control (FBC) Monitor Operation:		
DTCs	 P0263 – Cylinder #1 Contribution/Balance P0266 – Cylinder #2 Contribution/Balance P0269 – Cylinder #3 Contribution/Balance P0272 – Cylinder #4 Contribution/Balance P0275 – Cylinder #5 Contribution/Balance P0278 – Cylinder #6 Contribution/Balance P0281 – Cylinder #7 Contribution/Balance P0284 – Cylinder #8 Contribution/Balance 	
Monitor Execution	continuous	
Monitor Sequence	None	
Sensors OK	CKP (P0335, P0336)	
Typical Monitoring Duration	10 sec	


Typical Fuel Balancing Control (FBC) Monitor Entry Conditions:			
Entry condition	Minimum	Maximum	
P0263, P0266, P0269, P0272,			
P0275, P0278, P0281, P0284:			
Engine speed	500 rpm	1150 rpm	
Injection quantity	3.5 mg/stroke	30 mg/stroke	
Not In Regeneration			
FBC wheel learn complete			

Typical Fuel Balancing Control (FBC) Monitor Malfunction Thresholds:

If the current correction for the injector exceeds 90% of the allowable correction for current operation conditions, the code is set.

Nominal Voltage Calibration:

Nominal Voltage Calibration (NVC) is a series of closed-loop controllers on the charge/discharge profile of fuel injectors during an injection event. NVC is designed to compensate for changes due to aging of the piezo stack and hydraulic control elements within individual injectors and of the injector charging circuitry to maintain consistent operation of these components over the life of the injector. The injector charge/discharge profile is shown in the figure below.

Nominal Voltage Calibration (NVC) Monitor Operation:	
DTCs	P1551 – Cylinder 1 Injector Circuit Range/Performance P1552 – Cylinder 2 Injector Circuit Range/Performance P1553 – Cylinder 3 Injector Circuit Range/Performance P1554 – Cylinder 4 Injector Circuit Range/Performance P1555 – Cylinder 5 Injector Circuit Range/Performance P1556 – Cylinder 6 Injector Circuit Range/Performance P1557 – Cylinder 7 Injector Circuit Range/Performance P1558 – Cylinder 8 Injector Circuit Range/Performance
Monitor Execution	continuous
Monitor Sequence	None
Sensors OK	Injector open circuit (P0201-0208), Injector performance (P02EE-02F5), Injector short circuit (P1201-1208), Injector high to low short (P1261-1268), ECT (P0117, P0118), RPS (P0191, P0192, P0193, P228E, P228F)
Typical Monitoring Duration	2 sec (set point voltage), 90 sec (other two tests)

Typical Nominal Voltage Calibration (NVC) Monitor Entry Conditions:			
Entry condition	Minimum	Maximum	
Rail pressure	1200 bar	1600 bar	
Engine coolant temperature	70 deg C	100 deg C	
Injection duration	300 us		
Single pilot-main injection profile			

Typical Nominal Voltage Calibration (NVC) Monitor Malfunction Thresholds:

If the set point voltage at end of energizing (yellow dot in figure) exceeds the allowable voltage given in the chart below for the current rail pressure set point or if there exists a persistent deviation between set and measured discharge time (yellow dot to blue dot in figure) or if there exists a persistent deviation between the set and measured voltage at end of energizing (yellow dot in figure)

Maximum Allowable Voltage At End of Energizing :						
Rail pressure (bar)	300	800	1200	2000		
Maximum allowed voltage (V)	89	91	93	108		

EXHAUST GAS SENSOR MONITOR

Air-Fuel Ratio Sensors: Tailpipe NOx and O2 Sensor Control Module

The NOx sensor control module is mounted to the vehicle frame under the body. It is used to control the combination tailpipe NOx and O2 sensor mounted in the diesel aftertreatment exhaust system downstream of the SCR and DPF. It communicates to the ECM via CAN to report NOx and O2 concentrations as well as sensor/controller errors.

The control module consists of a microprocessor, RAM, ROM, EEPROM, Ip1 circuit, Ip2 circuit, Rpvs circuit, heater driver, and temperature sensor. The EEPROM stores sensor and controller module calibration coefficients obtained during the manufacturing process. The Ip1 circuit consists of an ASIC (like that of a UEGO ASIC) that adjusts pumping current in the sensing element's Ip1 circuit for O2 detection. The Ip2 circuit adjusts the pumping current in the sensing element's Ip2 circuit for NOx detection. The Ip2 circuit consists of 2 bands: a wide range and a narrow range. The Rpvs circuit is a measurement of the resistance of the Vs cell of the sensor element. This measurement is used to estimate the temperature of the sensing element's target operational temperature. PID feedback from Rpvs is used to control and maintain the element temperature. The microprocessor processes all of the inputs from the sensing element and outputs to the CAN circuit. The temperature sensor in the controller module is used for compensating the temperature dependency of circuit components and for OBD rationality checks.

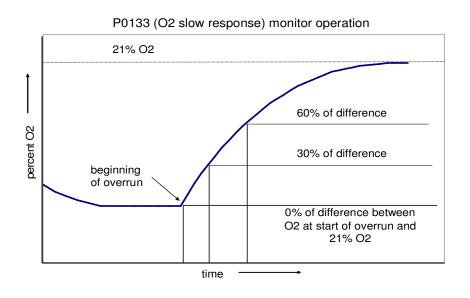
The NOx controller module interfaces with the vehicle via a power, signal ground, power ground, and CAN. The compensated O2 concentration, compensated NOx concentration, Rpvs, pressure compensation factors, sensor/module OBD (including monitor completion flags), module temperature, software ID, CALID, and CVN are communicated via CAN to the vehicle PCM.

NOx Controller Module	Malfunctions
DTCs	P06EA NOx Sensor Processor Performance (Bank 1 Sensor 1)
	U05A1 NOx Sensor "A" Received Invalid Data From ECM/PCM
	P225A NOx Sensor Calibration Memory (Bank 1 Sensor 1)
Monitor execution	continuous
Monitor Sequence	Ip2-N and Ip2-W range rationality – 50ppm < [NOx] < 100ppm
Sensors OK	not applicable
Monitoring Duration	5 seconds to register a malfunction

Typical NOx Controller Malfunction Thresholds
P06EARAM failure, ROM CRC check error or EEPROM CRC check error lp1 out of range – lp1(VIP2.1) < 1.8V, lp1(VIP2.1) > 2.2 V, lp1(VIP2.2) < 0.2 V, or lp1(VIP2.2) > 0.6V lp2-W out of range – Vs+ \geq 5.35V and lp2-W > 4.8 V lp2-N out of range – Vs+ \geq 5.35V and lp2-N < 0.2 V lp2-N and lp2-W range rationality – Integral value of differential between lp2-N & lp2-W \geq 250 ppm Vp2 circuit failure – Vp2 < 250mV or Vp2 > 650mV Rpvs short to ground – Rpvs < 0.2V Temperature sensor short to battery > 4.5 V Temperature sensor short to ground < 0.45 V Temperature sensor open, between 0.45 V and < 0.48 V
U05A1 Erroneous Signal (Dew point reached with ignition off, etc.) Timeout (>1 second before message received)
P225A Calibration memory does not pass CRC check

The NOx sensor is primarily used to sense O2 and NOx concentrations in diesel exhaust gas. The sensor is mounted in a vehicle's tailpipe, perpendicular to exhaust gas flow. The sensor is typically mounted downstream of an SCR and DPF in an aftertreatment-equipped diesel exhaust system. The sensor interfaces to a NOx controller module that controls the sensor element's sense circuit and heater.

The NOx Sensor operates similarly to a UEGO sensor for measuring lp1 (O2 concentration). Exhaust gas enters through a diffusion barrier into the 1st measurement chamber. The sensor infers an air fuel ratio relative to the stoichiometric (chemically balanced) air fuel ratio by balancing the amount of oxygen pumped in or out of the 1st measurement chamber. As the exhaust gasses get richer or leaner, the amount of oxygen that must be pumped in or out to maintain a stoichiometric air fuel ratio in the 1st measurement chamber varies in proportion to the air fuel ratio. By measuring the current required to pump the oxygen in or out, the O2 concentration can be estimated.


The Ip2 (NOx concentration) measurement takes place in a 2nd measurement chamber. Exhaust gas passes from the 1st measurement chamber through a 2nd diffusion barrier into the 2nd measurement chamber. The NOx present in the 2nd measurement chamber is dissociated into N2 and O2. The excess O2 is pumped out of the 2nd measurement chamber by the pumping current, Ip2. Ip2 is proportional to the NOx concentration in the measured gas.

The NOx sensor is equipped with a memory component which stores unique sensor characteristics used to compensate for part-to-part variation of the element during the manufacturing process. The memory stores lp1 and lp2 gains/offsets for each individual sensor.

The NOx module output is monitored by the ECU for positive and negative offsets, stuck, and rationality. The Tipout portion of the plausibility test is responsible for detecting offsets. After the NOx sensor has reached dew point and light off, the signal is considered "valid". During an engine "decel fuel cut", it is assumed the engine out NOx is near zero. As long as conditions indicate no ammonia slip, any readings sent by the NOx sensor are offsets from zero. If the indicated error is too large, the code is set. The tip-in portion of the monitor is responsible for detecting "stuck" sensor. Over a series of "tip-in" events, approximately 5, the minimum and maximum NOx values are recorded. This delta is then compared to a minimum threshold, also approximately 5 ppm. If the delta is less than the threshold the code is set. Rationality (slope offset) is detected by the Diesel Particulate Filter Regeneration portion. This compares the output of the NOx sensor with an engine output NOx model when SCR catalyst conversion is near zero (during a DPF regen at high exhaust temperatures, >500 deg C). The delta between the values is filtered and then is compared to a threshold. An error > 20 ppm will indicate a fault and the code will be set

NOx – O2 Sensor Malf	unctions	
DTCs	P0133 O2 Sensor Circuit Slow Response (Bank 1 Sensor 1)	
	P0134 O2 Sensor Circuit No Activity Detected (Bank 1 Sensor 1)	
	P164A O2 Sensor Positive Current Trim Circuit Performance (Bank 1 Sensor 1)	
	P2A00 O2 Sensor Circuit Range / Performance (Bank 1 Sensor 1)	
	P2200 NOx Sensor Circuit (Bank 1 Sensor 1)	
	P2201 NOx Sensor Circuit Range/Performance (Bank 1 Sensor 1)	
	P220E NOx Sensor Heater Control Circuit Range/Performance (Bank 1 Sensor 1)	
	P2209 NOx Sensor Heater Sense Circuit Range/Performance (Bank 1 Sensor 1)	
	P220A NOx Sensor Supply Voltage Circuit (Bank 1 Sensor 1)	
Monitor execution	continuous	
Monitor Sequence	Ip2 Open – 02 ≥ 5% or F/C > 3 seconds and O2 ≥ 19% Ip2 Crack – F/C > 5 seconds and O2 ≥ 19%	
Sensors OK	not applicable	
Monitoring Duration	X events per trip	

Typica	NOx – O2 Sensor Malfunctions Thresholds
	As shown in figure below, during a transition from load to overrun/decel fuel shutoff, one of the
The tim	g occurs: ie for the observed O2 percentage to increase from the value under load by 30% of (21%-O2 tage under load) exceeds a value dependent on air mass
	The time for the observed O2 percentage to increase from the value under load + 30% of the ice to the value under load + 60% of the difference exceeds 2.5 seconds
	The time for the observed O2 percentage to increase from the value under load to the value under 60% of the difference exceeds 7.5 seconds. (Used to detect completely inert sensors.)
(monito	r operates when the vehicle is not undergoing particulate filter regeneration)
P0134 temper	If there is no available O2 signal at 130 seconds after the sensor has achieved operating ature
of the C	In an extended overrun/decel fuel shutoff condition, an adaption factor is calculated for the response 02 sensor to ensure that the sensor reads 20.95% O2 in air. Code is set if adaption factor is outside ge 0.95 – 1.10.
concen concen	A calculated oxygen concentration is derived from fuel, boost, and EGR. Observed oxygen tration is evaluated within three speed/load/air mass ranges. Code is set if observed oxygen tration falls outside the range ((calculated O2 concentration – negative offset, calculated O2 tration + positive offset). Ranges and allowable O2 concentration deviations are given in the table
(monito	r operates when the vehicle is not undergoing particulate filter regeneration)
P2200	Vs, COM, Ip1 short to battery – ASIC Diag2=1 and Vs, COM, Ip1 \ge 9V
	Ip2 short to battery – Ip2 ≥ 4.8V Vs, COM, Ip1 short to ground – ASIC Diag2=1 and Vs, COM, Ip1 < 9V
	Ip2 short to ground – Ip2 ≤ 2V Ip1 Open – Vs ≤ 225mV, Vs ≥ 625mV & -0.2mA ≤ Ip1 ≤ 0.2mA
	Vs Open – Vs > 1.5V COM Open – Rpvs > RpvsA (target Rpvs stored in sensor memory) or ASIC Diag1=1
	Ip2 Open – Ip2-W \leq 0.2V and Ip2-N \leq 0.2V Sensor Memory CRC check
	Vs/lp1 Cell Crack – lp1 > 6.4mA lp2 Cell Crack – lp2-W > 4.8V
P2201	NOx Negative Offset – NOx Sensor error greater than 20 ppm offset NOx Positive Offset – NOx Sensor greater than 15 ppm offset
	Tip-in – Filtered tailpipe NOx on tip-in delta < 5 ppm
	Regeneration – NOx sensor reading average delta to model value > 20 ppm
P220E	Heater control failure – Rpvs \ge 0.2V and Rpvs < TRpvs - 30 Ω or Rpvs > TRpvs + 30 Ω Heater Open – Heater current < 0.4A
	Heater short to battery – Δ Heater Voltage > 0.2V Heater short to ground – Δ Heater Voltage > 0.2V
DOOOC	Heater performance failure – Heater current \geq 0.4A and Heater Resistance \geq 11 Ω
P2209	NOx/O2 Availability $- > 1$ PL (Healing mode) per cycle or > 9 sec of Nox/O2 not valid Battery failure $-$ Battery $> 17V$ or Battery $< 10V$
1 220A	$Dattory ratio = Dattory > 17 \lor 01 Dattory > 10 \lor$

Oxygen Sensor Plausibility Measurement (P2A00) Evaluation Ranges and Allowable Deviations:						
	Range 1		Range 2		Overrun	
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
Engine speed (rpm)	1200	2500	1200	2000	100	4000
Fuel injection quantity (mg/stroke)	20	38	12	19.5	0	0.5
Air mass (mg/stroke)	400	730	400	700	100	1000
Allowable deviation (% O2)	-5.1	6.3	-6.2	7.9	-4.6	6.3

NOx Sensor Operation Modes

[Prive start									Drive end
Γ	Engine OFF	Engine OFF			Engi	ne ON			Engine OFF	Engine OFF
Γ	Key-OFF	Key-ON		Key-ON Key OFF Key-OFF						
	-		Heater OFF	NA Mode Vs No Active	NA Mode Vs Active	A Mode under FLO	A Mode After FLO	A Mode & F/C	Self Shut Down	-
-	4	Failure occurre	d timing	4	4	4	4	7	4	4
		In case of normal In case of engine stall	0	٢	6	6	Ø	8	0	0

Mode 1 – No voltage supply to module or sensor. Non-operational.

Mode 2 – Voltage is supplied to module, voltage is not supplied to the sensor.

Mode 3 – Voltage is supplied to module, voltage is not supplied to the sensor. Dew-point waiting period.

Mode 4 – Voltage is supplied to the module and to the sensor. The Vs cell of the sensor is not active.

Mode 5 – Voltage is supplied to the module and to the sensor. The Vs cell of the sensor is active.

Mode 6 – Voltage is supplied to the module and to the sensor. Sensor is in fast light-off to quickly heat sensing element to operational temperature.

Mode $\overline{7}$ – Voltage is supplied to the module and to the sensor. The sensor has exited fast light-off and O2 and NOx will be available during this mode.

Mode 8 - Voltage is supplied to the module and to the sensor. The sensor has exited fast light-off and O2 and NOx will be available during this mode. During this mode a fuel cut condition is present, as communicated by the PCM.

Mode 9 - Voltage is supplied to module, yet voltage is not supplied to the sensor.

Mode 10 - No voltage supply to module or sensor. Non-operational.

EXHAUST GAS RECIRCULATION (EGR) SYSTEM MONITOR

EGR Rate System Monitor

The EGR system is a closed loop EGR control system that uses an Air System Model EGR to estimate the percent of EGR in the cylinder. Airflow into the engine is modeled using a Mass Airflow Sensor (MAF) and a model of airflow over the throttle restriction. EGR mass flow is then calculated as the difference between the cylinder charge from the speed-density equation and this model of the mass airflow after the throttle. This model value of the actual EGR flow based on measured values is compared with the estimated EGR rate computed by the EGR rate controller. The EGR rate controller calculates the mass flow based on an open area estimate at the EGR valve and a modeled value of mass flow per open area. EGR open area estimate uses a combination of the area calculated from the modeled EGR rate and a calibrated curve of the expected open area based on EGR valve position.

Once the engine is warm and the system in closed-loop EGR control, the monitor awaits calibrated engine speed/load conditions selected for robust detection of high flow and low flow faults. When the engine enters the operational regime for robust detection, the calculated rate deviation (modeled – controller estimate) is compared to thresholds that are calibrated as a function of speed/load. An up/down counter is used that counts upward when the rate deviation exceeds the calibrated threshold and counts downward when the deviation falls below the threshold for the case of high flow. Similarly, the up/down counter counts upward when the rate deviation falls below a calibrated threshold and counts downward when it rises above the threshold for the case of low flow. Once the debounce counter exceeds a calibrated threshold for either high or low flow then a malfunction is detected. A low flow malfunction indicated (P0401) and a high flow malfunction in indicated (P0402)

EGR Flow Check Operation:	
DTCs	P0401 – Insufficient EGR Flow
	P0402 – Excessive EGR Flow
Monitor Execution	Continuous
Monitor Sequence	None
Monitoring Duration	

Typical EGR Flow Check Entry Conditions (High Flow Detection):			
Entry Condition	Minimum	Maximum	
Engine Torque	100 Nm	600 Nm	
Engine RPM	600 rpm	2500 rpm	
Engine Coolant Temperature	70 deg C	100 deg C	
EGR Valve Position	0%	6%	
EGR Rate Desired Value	0%	15%	

Typical EGR Flow Check Entry Conditions (Low Flow Detection):			
Entry Condition	Minimum	Maximum	
Engine Torque	100 Nm	600 Nm	
Engine RPM	600 rpm	2500 rpm	
Engine Coolant Temperature	70 deg C	100 deg C	
EGR Valve Position	40%	60%	
EGR Rate Desired Value	0%	100%	

Typical EGR Flow Rate Malfunction Thresholds:

AirCtl_rEGRModMaxDvtFlt > 28 (insufficient flow); AirCtl_rEGRModMinDvtFlt < -22 (excessive flow)

EGR Cooler / EGR Cooler Bypass Monitor

The functionality of the EGR cooler system, including the bypass valve, is monitored by means of comparing a modeled EGR temperature downstream of the cooler with a sensor value. Both under-cooling and over-cooling are detected. Monitoring occurs when the engine is in normal operation under closed-loop exhaust gas recirculation control and no air system errors are present. Common release conditions for both under-cooling and over-cooling include an engine coolant temperature within a calibrated range (60 - 90 deg C). A working range of engine speed and torque are calibrated for robust detection of a failed cooler (under-cooling) or a stuck ECB valve (over-cooling). If these conditions are met, general monitor release occurs for over-cooling if the ECB valve is in the open position and under-cooling if the ECB valve is in the closed position. The monitor then checks for a steady-state condition using the gradient of the modeled temperature of the EGR downstream of the cooler. The gradient of the modeled temperature is compared to a calibrated threshold to determine steady-state. Once the general release and steady-state conditions are met a timer counts to ensure the conditions are held for a calibrated time, after which the monitor is released and the modeled value is compared to the sensor value for EGR temperature downstream of the cooler. If the difference between the modeled and sensor value exceeds a threshold calibrated as a function of engine speed and torque then a malfunction is detected.

EGR Cooler (Under-cooling) Monitor:		
DTCs	P2457 – EGR Cooler Performance	
Monitor execution	Continuous, once entry conditions are met	
Monitor Sequence	None	
Monitoring Duration	1 second to detected a malfunction	

EGR Cooler/ECB Entry Conditions (Over-Cooling):		
Entry Condition	Minimum	Maximum
Engine Speed	700 rpm	2000 rpm
Torque	50 Nm	650 Nm
Engine Coolant Temperature	70 deg C	
Rate of Change of EGR Cooler Outlet Temperature		5 deg C/sec
EGR Cooler Bypass Valve Command	50	
Timer for release conditions	1 sec	

Typical EGR Cooler Over-Cooling (P24A5) Threshold Map											
RPM/TRQ	700	900	1100	1300	1500	1700					
30	83	79	68	64	56	100					
60	81	75	70	67	78	100					
90	62	57	70	78	76	100					
120	53	64	82	76	72	100					
150	54	58	69	91	76	100					
180	51	52	72	108	107	100					

EGR Cooler (Over-cooling) Monitor:								
DTCs	P24A5 – Exhaust Gas Recirculation Cooler Bypass Control Stuck (Bank 1)							
Monitor execution	Continuous, once entry conditions are met							
Monitor Sequence	None							
Monitoring Duration	5 seconds to detected a malfunction							

EGR Cooler/ECB Entry Conditions (Under-Cooling):		
Entry Condition	Minimum	Maximum
Engine Speed	700 rpm	2000 rpm
Torque	50 Nm	650 Nm
Engine Coolant Temperature	70 deg C	
Rate of Change of EGR Cooler Outlet Temperature		5 deg C/sec
EGR Cooler Bypass Command		50
Timer for Release Conditions	1 sec	

Typical EGR Cooler Under-Cooling (P2457) Threshold Map											
RPM/TRQ	900	1100	1300	1500	1700	1900					
375	87	56	63	73	75	65					
425	63	53	61	69	64	43					
475	39	44	57	73	89	55					
525	35	45	52	67	65	77					
575	45	40	70	70	83	72					
625	52	42	85	88	66	76					

EGR System Slow Response

Slow responding EGR systems are detected through the EGR Closed-loop control limits monitors.

EGR Closed-loop Control Limits Monitor

The control system is closed-loop around EGR rate during normal operation, and the limits of the control system are monitored by observing the control deviation calculated as the difference between the desired EGR rate set point (after dynamic correction) and the actual EGR rate determined from an Air System Model. The Air System Model EGR estimates the percent of EGR in the cylinder by modeling the induction system based on the Mass Airflow Sensor (MAF) reading and an estimate of the airflow over the throttle restriction. EGR mass flow is then calculated as the difference between the cylinder charge from the speed-density equation and this model of the mass airflow into the intake manifold. This model value of the actual EGR flow based on measured values is compared with the desired EGR rate set point. If there the deviation between the controller set point EGR rate and the modeled EGR rate exceed calibrated thresholds the system control limit malfunction is indicated.

If no air system faults are present, the control limit monitor functions continuously during closed-loop operation once the engine is warm (ECT>70C). Separate threshold maps are used to indicate the EGR system operation is at its control limits for both the high flow and low flow extremes. Control limit threshold maps are a function of engine torque and engine speed and are based upon the expected distribution of deviations from a statistical sampling. An up/down counter is used that counts upward when the control deviation exceeds the calibrated threshold and counts downward when the control deviation falls below the threshold for the case where the system operation is limited to EGR rates higher than the controller set-point. Similarly, the up/down counter counts upward when the rate deviation falls below a calibrated threshold and counts downward when it rises above the threshold for the case where the system operation if limited to EGR rates lower than the controller set-point. Once the counter exceeds a calibrated thresholds for either case a malfunction is detected (P04DA/P04D9).

EGR Closed-loop Control Limits Check Operation:							
DTCs	P04DA (Closed Loop EGR Control At Limit - Flow Too High)						
	P04D9 (Closed Loop EGR Control At Limit - Flow Too Low)						
Monitor Execution	Continuous						
Monitor Sequence	None						
Monitoring Duration							

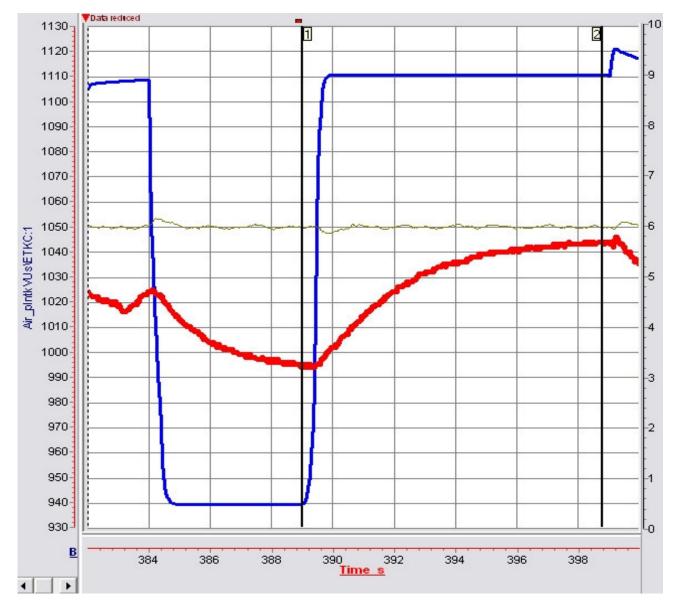
Typical EGR Closed-loop Control Limits Check Entry Conditions:							
Entry Condition	Minimum	Maximum					
No Air System Faults							
Engine coolant temperature	70 deg C						

Typical EG	R Clo	osed-le	oop C	ontrol	– Thre	shold N	<i>l</i> lap									
RPM/TRQ	0	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
100	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
150	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
200	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
250	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
300	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
350	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
400	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
450	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
500	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
550	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
600	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
650	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
700	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
750	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50

Mass Airflow Closed-loop Control Limits Monitor

During DPF regeneration the control system is closed-loop around air mass flow and the limits of the control system are monitored by observing the control deviation calculated as the difference between the desired air mass flow and the actual mass air flow determined from the MAF sensor. If no air system faults are present, the control limit monitor function continuously during closed-loop operation. Separate threshold maps are used to indicate the control system operation is at its limits for both the high flow and low flow extremes. Control limit threshold maps are a function of engine torque and engine speed and are based upon the expected distribution of deviations from a statistical sampling. An up/down debounce counter is used that counts upward when the control deviation exceeds the calibrated threshold and counts downward when the control deviation falls below the threshold for the case where the system operation is limited mass airflow higher than the controller set point. Similarly, the up/down counter counts upward when the rate deviation falls below a calibrated threshold and counts downward when the controller set point. Similarly, the up/down counter counts upward when the rate deviation falls below a calibrated threshold and counts downward when it rises above the threshold for the case where the system operation is limited to mass airflow lower than the controller set-point. Once the counter exceeds calibrated thresholds for either case a malfunction is detected.

Mass Airflow Closed-loop Control Limits Check Operation:							
DTCs	P02EC - Diesel Intake Air Flow Control System - High Air Flow Detected						
	P02ED - Diesel Intake Air Flow Control System - Low Air Flow Detected						
Monitor Execution	Continuous						
Monitor Sequence	None						
Monitoring Duration							


Typical Mass Air Flow Closed-loop Control Limits Check Entry Conditions:									
Entry Condition	Minimum	Maximum							
No Air System Faults									
Engine coolant temperature 70 deg C									

Typical Ma	Typical Mass Airflow Closed-loop Control – Threshold Map															
RPM/TRQ	0	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
100	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
150	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
200	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
250	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
300	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
350	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
400	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
450	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
500	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
550	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
600	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
650	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
700	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
750	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50

BOOST PRESSURE CONTROL SYSTEM MONITORING

Intrusive Turbo Position and Response Monitoring

The 6.7L engine is equipped with an oil pressure actuated, variable vane turbocharger. Additionally, chassis cert applications have a wastegate for bypassing exhaust gas to assist with controlling boost while in heavy load situations. Neither the variable geometry turbo (VGT) nor the wastegate have position sensors, so turbo and wastegate position is inferred using a duty cycle to position transfer function. To verify actual position based on the nominal transfer function, an intrusive monitor sweep is performed. When entry conditions are met, the intrusive monitor for VGT fixes the EGR valve to a specific position, closes the wastegate, and then commands an inferred turbo position of 25%, then 85% within a calibratable time. The minimum and maximum MAP values are saved and compared to a threshold. If the desired separation in MAP pressure isn't achieved, a fault is detected. If the desired separation in MAP is achieved prior to the full 10 seconds allotted, the test is aborted and considered a pass.

In the example above, at 383 seconds, the EGR valve is set to 10%; one second later turbocharger is commanded to 25%. The 25% position is held for 5 seconds to allow MAP to stabilize. After 5 seconds, turbocharger is ramped back to 85%. Since the pressure rise in MAP was greater than 4.5 kPa, this test was a "pass".

Note: this monitor also serves to monitor for a slow responding boost pressure system due to the time component of the threshold.

VGT Monitor:	
DTCs	P132B - Turbocharger/Supercharger Boost Control "A" Performance
Monitor Execution	Once per driving cycle
Monitor Sequence	VGT, then wastegate
Sensors OK	ECT, MAP, VS
Typical Monitoring Duration	15 seconds for full VGT monitoring cycle if pressure abort threshold hasn't been reached

Typical VGT Monitor Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine speed for learning	500 rpm	760 rpm
Pedal position allowed for learning		0.5 %
Engine oil temperature for learning	158 deg C	225 deg C
Fuel quantity allowed for learning		20 mg/stoke
Vehicle speed for learning	3 mph	6-10 mph
Loop counts after brake cycle		800 counts
Barometric Pressure	67 kPa	1020 kPa

Typical VGT Monitor Malfunction Thresholds:

Response from 25% VGT position to 85% VGT position in 10 seconds results in a change in manifold pressure of 2 kPa or greater at sea level or 1.25 kPa at 8000 feet.

Intrusive Wastegate Monitoring

The intrusive wastegate monitor operates on the same principles and has the same entry conditions as the intrusive VGT monitor. It runs once the VGT monitor completes, using the same commanded VGT position (85%) and EGR valve position (10%). The wastegate is commanded to 5% open for 2 seconds, then 95% open for 2 seconds. The minimum and maximum MAP values are saved and compared to a threshold. If the desired separation in MAP pressure isn't achieved, a fault is detected.

Wastegate Monitor:	
DTCs	P1249- Wastegate Control Valve Performance
Monitor Execution	Once per driving cycle
Monitor Sequence	VGT, then wastegate
Sensors OK	ECT, MAP, VS
Typical Monitoring Duration	4 seconds for full wastegate monitoring cycle if pressure abort threshold hasn't been reached

Typical Wastegate Monitor Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine speed for learning	500 rpm	760 rpm
Pedal position allowed for learning		0.5 %
Engine oil temperature for learning	158 deg C	225 deg C
Fuel quantity allowed for learning		20 mg/stoke
Vehicle speed for learning	3 mph	6-10 mph
Loop counts after brake cycle		800 counts
Barometric Pressure	67 kPa	1020 kPa

Typical Wastegate Monitor Malfunction Thresholds:

Response from 5% wastegate position to 95% wastegate position in 2 seconds results in a change in manifold pressure of 2.0 kPa or greater at sea level or 1.25 kPa at 8000 feet.

Functional Overboost Monitoring

The 6.7L engine utilizes a closed loop boost pressure controller to maintain desired boost pressure set point under all temperature ranges and engine operating modes. The overboost monitor compares the desired vs. actual measured boost pressure while in a specific range of closed loop boost pressure operation. If the boost pressure governor deviation is greater than the calibrated threshold for 7 seconds, a fault is detected and the P-code is set. The closed loop monitoring window is defined as any inner torque above 50 nm, and any engine speed above 1500 rpm.

Overboost Monitor:	
DTCs	P0234 - Turbocharger/Supercharger "A" Overboost Condition
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	ECT, MAP, MAF,
Typical Monitoring Duration	7 seconds for fault detection

Typical Overboost Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Torque	50 Nm	
Engine Speed	1500	4000

Typical Overboost Monitor Malfunction Thresholds:

If desired boost pressure - actual boost pressure < -11.5 kPa for 7 seconds, a fault is detected.

Functional Underboost Monitoring

The underboost monitor works in a similar fashion to the overboost monitor by comparing the desired vs. actual measured boost pressure while in a specific range of closed loop boost pressure operation. If the boost pressure governor deviation is greater than the calibrated threshold for 7 seconds, a fault is detected and the P-code is set. The closed loop monitoring window is defined as any inner torque above 50 nm, and any engine speed above 1500 rpm. The threshold limit is wider for the underboost monitor due to transient boost system response, compensation for boost pressure lag, and short term (1-2 second) momentary torque truncation when air path torque is kept high, but fueling is limited for component protection.

This diagnostic will detect a gross air path leak such as the turbo discharge or CAC discharge tube being blown off, major pre-turbo exhaust leaks, or a turbo stuck in the full open VGT position.

Overboost Monitor:	
DTCs	P1247 - Turbocharger Boost Pressure Low
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	ECT, MAP, MAF,
Typical Monitoring Duration	7 sec

Typical Overboost Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Torque	50 Nm	
Engine Speed	1500 rpm	4000 rpm

Typical Overboost Monitor Malfunction Thresholds:

If desired boost pressure – actual boost pressure > 50 kPa for 7 seconds, a fault is detected.

Threshold Underboost Monitoring

The pressure-based underboost diagnostic is adequate for detecting gross air system leaks; however, the emissions threshold leak to exceed the HC standard is approximately a one quarter inch NPT hole. With a leak of that magnitude, the closed loop boost pressure governor is capable of maintaining the desired boost pressure. The functional underboost monitor is not able to detect a leak of such size, so an additional boost system diagnostic is utilized since desired pressure is maintained in the system.

The closed loop boost pressure controller controls boost based predicted control targets and anticipated turbocharger position. The output value, in percentage, indicates the "control effort" required to maintain the desired boost pressure. With a boost system leak, the control effort increases. There is a temperature entry condition, torque entry conditions, a steady state requirement on manifold pressure, an exhaust temperature entry condition, an exhaust lambda entry condition, and a threshold map. If the threshold is exceeded for 7 seconds, a fault is detected.

Overboost Monitor:	
DTCs	P0299 - Turbocharger/Supercharger "A" Underboost Condition
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	ECT, MAP, MAF
Typical Monitoring Duration	7 sec

Typical Overboost Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Torque	250 Nm	1000 Nm
Engine coolant temperature	-7 deg C	
Ambient air temperature	-7 deg C	
Barometric Pressure	75 kPa	110 kPa
MAP steady state pressure		25 kPa
TOxiCatUs Temperature	99 deg C	
Mass Air Flow		1300 kg/h
Not in Cold Start Warm-up Mode		•
Regeneration Status	None	

Typical Overboost Monitor Malfunction Thresholds:

If control effort percent is > 25% for 7 seconds and Exhaust Lambda is less than 1.2, a fault is detected.

Charge Air Cooler Monitoring

The 6.7L engine is equipped with an air to water charge air intercooler. The CAC is on a secondary coolant loop, independent from the main engine coolant system. The temperature at the outlet of the cooler is measured as TCACDs, however the temperature going into the cooler is modeled.

To detect a CAC under cooling situation, the efficiency of the cooler is modeled at various speeds and airflows via a 3d speed/airflow multiplier table, providing a modeled cooler out temperature. Cooler efficiency * compressor out temperature = modeled cooler out temp. This modeled cooler out temp is then compared to the measured coolant out temp, if the difference is greater than a threshold curve, a fault is detected and a p-code is set.

Charge Air Cooler Monitor:	
DTCs	P026A - Charge Air Cooler Efficiency Below Threshold
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	ECT, MAP, MAF
Typical Monitoring Duration	10 seconds for fault detection

Typical Charge Air Cooler Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Engine speed	1200 rpm	
Engine coolant temperature	70 deg C	
Ambient air temperature	-7 deg C	
Barometric Pressure	75 kPa	110 kPa
Manifold absolute pressure	120 kPa	
Intake air temperature	-7 deg C	
Injection quantity	40mg/stk	

Typical Charge Air Cooler Monitor Malfunction Thresholds:

If the difference of measured temperature and modeled temperature is less than -85 C deg at 0 deg C compressor out temp, or less than 0 C deg at 250 deg C compressor out temp, a fault is set.

PARTICULATE MATTER (PM) FILTER MONITORING

DPF Filter Efficiency and Missing Substrate Monitors

The DPF is monitored to ensure no leaks have developed in the substrate and that the filter has not been removed. Preconditioning is required for DPF monitoring such that the distance traveled is greater than 5000 km, which allows the DPF to cycle through several regeneration events before the monitor becomes active.

The DPF Filter Efficiency monitor compares the calculated restriction of the DPF to a threshold which is a function of volumetric exhaust flow. A filtering routine is used where a counter will increment when the measured value is below the threshold and decrement when above the threshold (clipped to a minimum of 0). When the counter exceeds a threshold, a fault is indicated.

The DPF Missing Substrate monitor operates in much the same way. The only exception is that instead of DPF restriction, the measured pressure upstream of the DPF is compared to a threshold which is a function of volumetric exhaust flow.

Monitor Summary:	
DTCs	P2002 – Diesel Particulate Filter Efficiency Below Threshold
	P244A – Diesel Particulate Filter Differential Pressure Too Low
Monitor execution	P2002: Once per trip after a DPF regeneration
	P244A: Continuous while meeting entry conditions
Monitor Sequence	None
Sensors OK	EGT, DPFP, CKP, ECT (P0117, P0118), EGT13 EGT14, MAF, IAT
Monitoring Duration	90 sec

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
Exhaust volumetric flow	400 m3/hour (P2002) 300 m3/hour (P244A)	2400 m3/hour
Not a regeneration event		
Intake air temperature	-20 deg C	
Engine coolant temperature	50 deg C	

Typical Malfunction Thresholds:

		2)							
DPF Efficiency Tes									
Normalized restric							w a thresh	nold (functi	on of engine
exhaust volumetric	c flow) for	90 second	ls. Typica	l values fo	r threshol	lds:			
Flow (m^3/hr)	300	600	900	1200	1500	1800	2100	2500	
Restriction	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	
	01.10				00			0110	
DPF Differential Pr	ressure Tr	ost. (P244	1 A)						
Measured DPF inle			<i>+</i>	ld (functio	n of ongin	na avhauet	volumetri	c flow) for 9	20 seconds
Typical values for t			atilicatic		n or engi		volumetri		0 3econds.
Typical values for t	inesnoia.								
Flow (m^3/hr)	300	600	900	1200	1500	1800	2100	2500	
Pressure (kPa)	7.99	15.02	27.94	47.13	72.80	104.94	143.45	204.61	

DPF Frequent Regeneration Monitor

The DPF Frequent Regeneration monitor calculates the distance between aftertreatment regeneration events. The distance between successive regeneration events is calculated and the average distance is calculated for the two most recent regeneration events. If the distance between regen events is below a threshold, a fault is indicated.

Monitor Summary:	
DTC	P2459 – Diesel Particulate Filter Regeneration Frequency
Monitor execution	Once per trip during which a DPF regeneration occurs
Monitor Sequence	None
Sensors OK	DPFP

Typical Entry Conditions:		-
Entry condition	Minimum	Maximum
Not in "degraded regen" mode due to DPF pressure sensor error		

Typical Malfunction Thresholds:

A fault is stored when the average distance between regeneration events is below a threshold. Typical threshold is 27 km.

DPF Incomplete Regeneration Monitor

The DPF Incomplete Regeneration monitor is used to detect an event where the DPF is not fully regenerated. If a regeneration event is aborted due to duration and the restriction of the DPF is still above a threshold, a fault is indicated. Upon the first occurrence of an incomplete regen, the system is put into a "degraded" regen mode. Another regen will be forced in approximately 150 miles unless a normal regen is triggered by the soot load first.

Monitor Summary:	
DTC	P24A2 – Diesel Particulate Filter Regeneration Incomplete
Monitor execution	Once Per Trip during which an active DPF regeneration occurs
Monitor Sequence	None
Sensors OK	EGT11, EGT12,EGT13, EGT14, DPFP, INJ
Monitoring Duration	20 minutes (maximum)

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
Monitor is activated during Aftertreatment regeneration events		

Typical Malfunction Thresholds:

If the restriction is above a threshold, a fault is indicated.

DPF Feedback Control Monitors

The system is monitored to ensure that closed loop control of the regeneration event is initiated within a reasonable period of time. The monitor runs during a regeneration event and compares the time in closed loop control to the total time in regen. If the time in closed loop control is less than a threshold (a function of total time in regen), then a fault is indicated.

If the closed loop controller is saturated at its limits and the temperature is not within the desired limit, a timer will increment. If control is regained, the timer will decrement. At the end of the regeneration event, if this timer exceeds a threshold (a function of total time in regen), a fault is indicated

Note: Ford Motor Company 2011 diesel programs are using in-cylinder post injection to achieve regeneration, not external exhaust injection. The Post injection is monitored during this feedback monitor; there is no additional monitor for "active / intrusive injection"

Monitor Summary:	
DTC	P24A0 – DPF Temperature Control
	P249F – Excessive Time To Enter Closed Loop DPF Regeneration Control
Monitor execution	During an active regeneration event
Monitor Sequence	None
Sensors OK	TIA, TCO, AMP, EGT11, EGT12, EGT13, EGT14
Monitoring Duration	Once per regeneration event

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Speed	1200 rpm	3500 rpm
Indicated Torque Setpoint	200 Nm	1500 Nm
Ambient Temperature	-6.7 deg C	
Coolant Temperature	70 deg C	
Barometric Pressure	75 kPa	

Typical Malfunction Thresholds:

If the time in closed loop operation is less than a threshold (function of total time in regen), a fault is indicated.

If the difference between desired and actual temperature is greater than a threshold for a sufficient period of time, a fault is indicated.

DPF Restriction Monitor

The DPF is monitored for conditions where it may be overloaded. The monitor compares the calculated restriction of the DPF to two thresholds. By exceeding the first threshold for a sufficient period of time, a wrench light will be illuminated. By exceeding the second threshold for a sufficient period of time, a wrench light and a MIL will be illuminated and engine output will be limited.

Monitor Summary:	
DTCs	P2463 – Diesel Particulate Filter Restriction – Soot Accumulation
	P246C - Diesel Particulate Filter Restriction – Forced Limited Power
Monitor execution	Continuous while meeting entry conditions
Monitor Sequence	None
Sensors OK	DPFP
Monitoring Duration	300 seconds

Typical Entry Conditions:		
Entry condition	Minimum	Maximum
Engine Speed	625 rpm	

Typical Malfunction Thresholds:

<u>Diesel Particulate Filter Restriction – Soot Accumulation (P2463) (Wrench Light)</u> Calculated normalized restriction is 1.5 times the normal value for soot load.

<u>Diesel Particulate Filter Restriction – Forced Limited Power (P246C) (Immediate MIL and Wrench Light)</u> Calculated normalized restriction is 2.0 times the normal value for soot load.

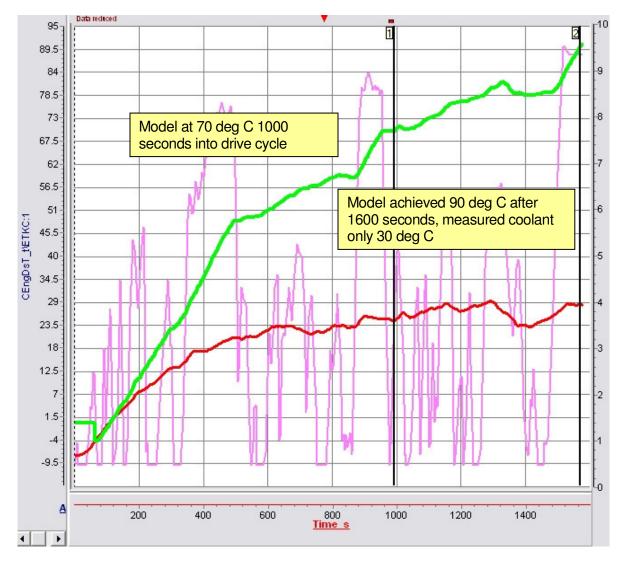
CRANKCASE VENTILATION (CV) SYSTEM MONITOR

The crankcase ventilation system is monitored during Air Mass Adaptive learning of the Mass Air Meter, in similar fashion to the Air Meter functional check. The CV monitor diagnostic compares the desired vs. actual air meter values while in a learning event- if the difference between them is too great a code is set. The figure below illustrates the flow chart and entry conditions for AMA.

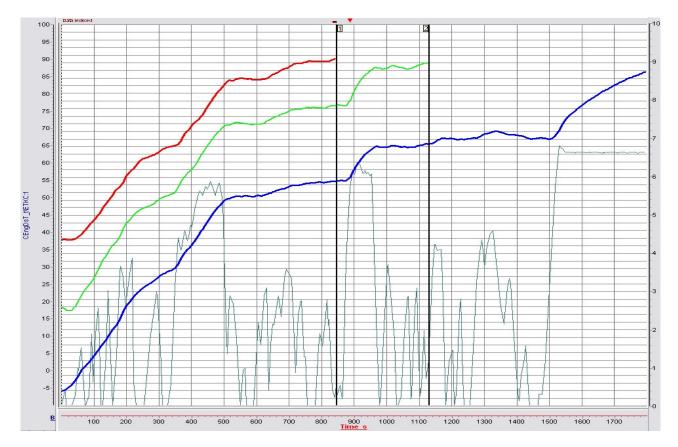
(Key On)
Coolant Temperature between 60-90 deg C Environmental Pressure > 720 hPa
NO Charge Air Cooler downstream temp change between 0-20 deg/C Throttle Valve between 0-20%?
MAF Rationality check not performed
Engine state = Normal for 10 sec
No water penetration on MAF sensor Charge Air Cooer downstream temp between -20 – 80 deg C?
NO Environmental Temperaute between -20 – 80 deg C
MAF Rationality check not performed
Torque between 20-200 Nm Engine Speed between 550-750rpm?
Difference between boost pressure and environmental pressure ≤ 200 hPa NO Coolant Temperature ≤ 100 deg at 1 sec after start up
MAF Rationality check
not performed
20 instances of AMA opportunitites
(Throttle valve between 0-85% and EGR valve between 0-90%) not exceeded
NO Air mass adaptation not already carried out in current drive cycle
MAF Rationality check
not performed
Actuator test active?
AMA limit of 20% exceeded? Process not inhibited by:
NO AFSPISetyDrft Fld
MAF Rationality check not performed
Request to Close EGR
Current conditions compared against defined/calibrated conditions
Air mass adaptation learning point released
NO Current air mass flow Preliminary within 10%
check results debounced
MAF Rationality check results reported
Coolant Temperature b/w 60-90 deg C Environmental Pressure > 720 hPa YES
Charge Air Cooler downstream temp change between 0-20 deg/C Engine Running?
Throttle Valve between 0-20%? NO Actuator test active? For .05 sec NO Check not inhibited by:
PISetyDrft Fld For 0.05 sec
Check not performed
MAF Rationality Error Reported

Mass Air Flow Sensor Functional Check Operation:		
DTCs	P00BC – Mass or Volume Air Flow "A" Circuit Range/Performance - Air Flow Too Low	
Monitor Execution	Once per drive cycle	
Monitor Sequence	None.	
Sensors OK	MAF (P0100, P0101, P0102), BP (P2228, P2229), EGRP (P0405, P0406, P0404, P0042E, P042F, P1335),	
Typical Monitoring Duration	7 seconds, duration while AMA is active.	

Typical Malfunction Thresholds:


If the measured airflow is less than -10% of anticipated airflow for 3 seconds a fault is detected and the code is set.

ENGINE COOLING SYSTEM MONITORING


Thermostat Monitor

The Thermostat Monitor checks that the thermostat is operating properly by modeling Engine Coolant Temperature (ECT) based on engine fueling, engine speed, vehicle speed, and the ambient temperature. There are increment and decrement portions to the model; the increment is based on engine speed and fuel quantity, while the decrement is derived from calculated radiator efficiency based on coolant delta temp to ambient and vehicle speed. The model is delayed by 60 seconds after engine start to negate potential errors due to block heater use. It is also suspended while in catalyst warm-up mode due to errors in fuel quantity heat being contributed to the coolant.

Once that estimation reaches the thermostat start-to-open temperature, if the actual measured ECT has not reached a minimum warm-up temperature and the driver has not spent too much time in part fuel cut off (over 30%), too low load (over 70%), too high vehicle speed (over 70%), or too low vehicle speed (over 70%) - then the thermostat is determined to be stuck open.

Warmup at -7 deg C on Unified Drive Cycle, DTC set when modeled temp reaches 90 deg C. Measured coolant temperature was only at 30 deg C.

Warm-up profiles	with	nominal	thermostat	on	Unified	Drive	Cycle	at	-7,	21	and	38	deg	С	ambient	start
temperatures.																

Thermostat Monitor:					
DTCs	P0128 – Coolant Temp Below Thermostat Regulating Temperature				
Monitor Execution	Once per driving cycle				
Monitor Sequence	None				
Sensors OK	Engine Coolant Temperature (ECT), Intake Air Temperature (IAT), Vehicle Speed (VS)				
Typical Monitoring Duration	tion Nominal time it takes for engine to warm up to thermostat "Start-To- temperature – see approximate times below. (Note: Unified Drive Cycle i minutes long)				
	Ambient Temperature	Drive Cycle	Completion Time		
	-7 deg C	Unified Drive Cycle + 70 mph cruise	33 min		
	21 deg C	Unified Drive Cycle	19 min		
	38 deg C	Unified Drive Cycle	14 min		

Typical Thermostat Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
Modeled engine coolant temperature	90 deg C	
Engine coolant temperature at start	-7 deg C	54 deg C
Intake air temperature at start	-7 deg C	
Ratio of time that the vehicle speed is above, 85 km/hr, to the total monitoring time		70%
Ratio of time that the engine fueling is below 20 mg/str to the total monitoring time		30%
Ratio of time that the engine torque is below 60 n/m to the total monitoring time		70%
Ratio of time that the vehicle speed is below 45 km/hr to the total monitoring time		70%

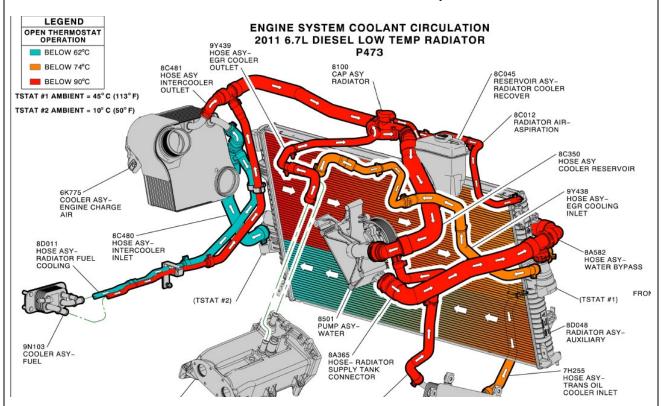
Typical Thermostat Monitor Malfunction Thresholds:
Measured Engine Coolant Temperature < 79 deg C

Primary Coolant Temp Dynamic Monitoring

To ensure the primary ECT sensor has not stuck below normal operating range, a simple dynamic check to verify a minimum rise in coolant temperature over a calibratable time has been implemented. If coolant temperature at start is greater than -35 deg C and less than 54 deg C, the monitor is enabled. At -35 deg C, the coolant is expected to rise up to -7 deg C in 291 seconds or less. If -7 deg C coolant temp. is not achieved in the required 291 second timeframe, a fault is detected. At a -7 deg C start temp, the coolant is expected to rise to 57 deg C in 4526 seconds- assuming worst case with EGR off, vehicle idling in neutral with heater on. Again, if the minimum temperature is not achieved in the required time, a fault is detected. This diagnostic is used in conjunction with the oil vs. coolant plausibility check, thermostat model, and SRC checks to verify proper ECT operation and engine warm-up.

ECT Dynamic Monitor:	
DTCs	P0116 - Engine Coolant Temperature Sensor 1 Circuit Range/Performance
Monitor Execution	Once per trip
Monitor Sequence	None
Sensors OK	ECT
Typical Monitoring Duration	291 seconds at -35 deg C start temp. idle only
	4526 seconds at -7 deg C start temp, idle only

Typical ECT Dynamic Monitor Entry Conditions:				
Entry condition	Minimum	Maximum		
Engine coolant temperature	-35 deg C	54 deg C		
Engine speed	400 rpm			


Typical ECT Dynamic Monitor Malfunction Thresholds:

291 seconds at -35 deg C start temp to rise to -7 deg C

4526 seconds at -7 deg C start temp to rise to 57 deg C

Secondary Coolant Temp Dynamic Monitoring

The 6.7L engine has a secondary coolant loop with two thermostats, a 20C thermostat for the charge air cooler and fuel cooler, and a 45C thermostat for the EGR cooler and trans cooler. System schematic below:

The dynamic check to detect a stuck ECT2 sensor is identical in function to the dynamic check used for the primary coolant loop. A minimum rise is expected over a calibratable amount of time,

ECT2 Dynamic Monitor:	
DTCs	P2183 - Engine Coolant Temperature Sensor 2 Circuit Range/Performance
Monitor Execution	Once per trip
Monitor Sequence	None
Sensors OK	ECT2,
Typical Monitoring Duration	5750 sec at -35C, 200 at 25C

Typical ECT2 Dynamic Monitor Entry Conditions:				
Entry condition	Minimum	Maximum		
ECT2	-35 deg C	45 deg C		
Engine Speed	400 rpm			

Typical ECT2 Dynamic Monitor Malfunction Thresholds:

within the time duration, must reach 25C

COLD START EMISSION REDUCTION STRATEGY MONITORING

Cold Start Emission Reduction System Monitor

The Post and post DOC temperatures are independently monitored during a cold start for the CSER System Monitor. The modeled Post DOC temperature rise is compared to the measured Post DOC temperature rise. Specifically, the monitor compares the maximum temperature rises. An error is detected if the difference between the modeled and measured Post DOC maximum temperature rise is above a threshold.

Error if DTPost_DOC_model – DTPost_DOC_meas > Threshold

- DTPost_DOC_model = MAX(TPost_DOC_model) INIT(TPost_DOC_model)
- MAX(TPost_DOC_model) = maximum of TPost_DOC_model during EOM3 ON and calibratable time after EOM3 switched to OFF
- INIT(TPost_DOC_model) = TPost_DOC_model when EOM3 ON
- Same method is used to calculate DTPost_DOC_meas

An error will also be detected if the modeled vs. measured post DOC maximum temperature rise is above a threshold.

CSER System Check Operation:				
DTCs	P050E – Cold Start Engine Exhaust Temperatures Too Low			
Monitor execution	During EOM3 Operation, once per drive cycle			
Monitor Sequence	None			
Sensors OK	TIA, EGT1, EGT2, MAF, MAP, P3			
Monitoring Duration	300 seconds			

Typical CSER System entry conditions:		
Entry condition	Minimum	Maximum
Engine in EOM3 Mode		
Ambient Temperature	-20 deg C	
Ambient Pressure	80 kPa	
Engine Coolant Temperature		50 deg C
Engine Soak Time	6 hr	
Engine Speed	600 rpm	3000 rpm
Engine Load (Torque)	0 Nm	800 Nm
No Sensor Errors		
No Error in Air Path, EGR, Boost, Fuel Path, Fuel Quantity, Timing and Pressure Monitors		

Typical CSER System malfunction thresholds:

Measured vs. Modeled Pre DOC Temperature Rise > 45 deg C.

Cold Start Emission Reduction Component Monitor

For all 2010 and subsequent model year vehicles that incorporate a specific engine control strategy to reduce cold start emissions, the OBD II system must monitor the components to ensure proper functioning. The monitor works by validating the operation of the components required to achieve the cold start emission reduction strategy, namely intake throttle and fuel balancing control.

Cold ITH Governor Deviation

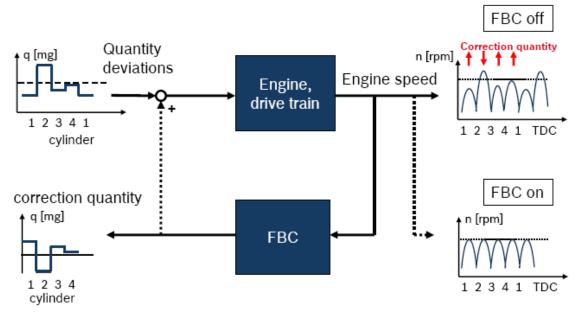
The throttle valve has a component level diagnostic to make sure that the valve is not stuck or sticking in a manner such that it cannot reach the desired position. The monitor runs if a jammed valve is not already detected, position control is in closed-loop control, adaptive learning is not active, and EOM3 is active. A minimum engine speed is used as an entry condition.

If the position governor deviation is above the maximum calibrated threshold or below the minimum calibrated threshold, then a timer for detection of the jammed valve fault begins.

Actuator Jammed Valve Check Operation:				
DTCs	P02E1 – Diesel Intake Air Flow Control Performance			
Monitor execution	During EOM3 after a cold start			
Monitor Sequence	None			
Monitoring Duration	10 seconds to register a malfunction			

Typical Actuator Jammed Valve Entry Conditions:					
Entry Condition	Minimum	Maximum			
Governor Active (closed-loop position control)					
Adaptive Learning Not Active					
Jammed Valve Fault Not Present on Actuator					
EOM3 Active					
RPM	700 rpm				

Typical Throttle Jammed Valve Check (P02EC/P02ED) Malfunction Thresholds:


Diesel Intake Air Flow Control High Air Flow Detected (P02EC)

If ThrVIv_rGovDvt > 29.8

Cold FBC

Fuel Balancing Control is an algorithm designed to reduce differences in injected fuel quantity from cylinder to cylinder. The increase in crankshaft speed due to individual cylinder combustion events is measured. The amount of fuel injected to each cylinder is then adjusted up or down to minimize the difference in increase in crankshaft speed from cylinder to cylinder. The total amount of fuel injected among all cylinders remains constant. The Cold FBC runs exactly the same as the normal FBC monitor, only difference is that it will run during EOM3 instead of EOM0. The concept is shown in the graphic below.

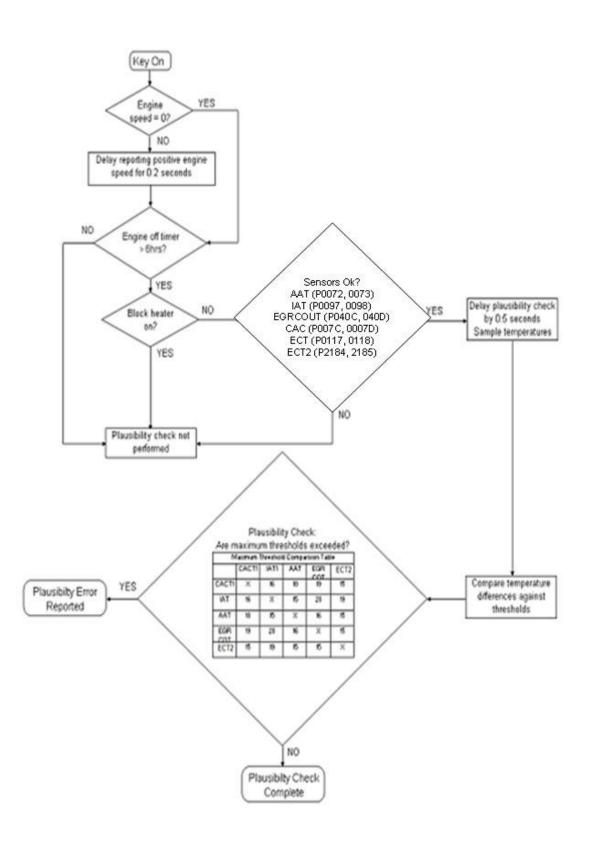
Basics of FBC

FBC operates in closed-loop control in an engine speed range of 500-1150 RPM, and a commanded injection quantity of 3.5 - 50 mg/stroke. The maximum allowed correction in fuel quantity for an individual cylinder is given by the following table.

CSER Component Monitor: Cold FBC Control Limits:			
	Injection quantity requested before FBC correction (mg/stroke)		
	3.5	7.5	30
Maximum allowable FBC correction (mg/stroke):	0.5	5	10

When the current correction for a given cylinder exceeds 99% of the allowable correction for the current conditions, a code is set.

CSER Component Monitor:	Cold FBC Monitor Operation:	
DTCs	P0263 – Cylinder #1 Contribution/Balance	
	P0266 – Cylinder #2 Contribution/Balance	
	P0269 – Cylinder #3 Contribution/Balance	
	P0272 – Cylinder #4 Contribution/Balance	
	P0275 – Cylinder #5 Contribution/Balance	
	P0278 – Cylinder #6 Contribution/Balance	
	P0281 – Cylinder #7 Contribution/Balance	
	P0284 – Cylinder #8 Contribution/Balance	
Monitor Execution	P0263 – During EOM3 after a cold start	
	P0266 – During EOM3 after a cold start	
	P0269 – During EOM3 after a cold start	
	P0272 – During EOM3 after a cold start	
	P0275 – During EOM3 after a cold start	
	P0278 – During EOM3 after a cold start	
	P0281 – During EOM3 after a cold start	
	P0284 – During EOM3 after a cold start	
Monitor Sequence	None	
Sensors OK	Crankshaft Position Sensor "A" Circuit (P0335)	
	Crankshaft Position Sensor "A" Circuit Range/Performance (P0336)	
Typical Monitoring Duration	10 sec	


Typical CSER Component Monitor: Cold FBC Monitor Entry Conditions:			
Entry condition	Minimum	Maximum	
EOM3 Active			
Engine speed	500 rpm	1150 rpm	
Injection quantity	3.5 mg/stroke	30 mg/stroke	
Engine Temperature			
Barometric Pressure			
FBC wheel learn complete			

Typical CSER Component Monitor: Cold FBC Monitor Malfunction Thresholds:

If the current correction for the injector exceeds 99% of the allowable correction for current operation conditions, the code is set.

Air Temperature Rationality Test

An air temperature rationality test is performed once every drive cycle, after a long soak of 8 hours or greater. At key on, a temperature sample is taken of each of the following sensors: Ambient Air (AAT), Intake Air (IAT), Charge Air Cooler outlet (CACT1), EGR Cooler outlet (EGT COT), and Secondary Coolant Temperature (ECT2). Once a cold start has been confirmed, the temperature samples are compared against each other, and the temperature differences compared against a threshold. One sensor must fail plausibility with all four other sensors to set a fault for the sensor in question. If one or more sensors fail plausibility with three or fewer sensors, a general temperature plausibility fault is set. If a block heater has been detected, or if any sensor has been flagged for a pending signal range malfunction, the plausibility check is not performed.

Ambient Air Temperature (AAT) Sensor Circuit Check:			
DTCs	P0072 – Ambient Air Temperature Circuit Low		
	P0073 – Ambient Air Temperature Sensor Circuit High		
Monitor Execution	Continuous		
Monitor Sequence	None		
Sensors OK	Not applicable		
Typical Monitoring Duration	2 sec.		

Typical Ambient Air Temperature Sensor Circuit Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Battery Voltage	8v	15v	
Key On			

Typical Ambient Air Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.10 V (-40 deg C) or voltage > 4.99 V (108 deg C)

Ambient Air Temperature Rationality Check			
DTCs	P0071 – Ambient Air Temperature Sensor Range/Performance		
Monitor Execution	Once per driving cycle. The check is disabled if a block heater is in use.		
Monitor Sequence	None		
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), EGT11 (P0548, P0549), EGRCOT (P040D, P040C), ECT (P0117, P0118), EOT (P0197, P0198), CACT1 (P007C, P007D)		
Typical Monitoring Duration	0.5 sec		

Typical Ambient Air Temperature Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine Off Time	8hrs	N/A
Engine coolant temperature	-35 deg C	121 deg C

Typical Ambient Air Temperature Rationality Check Thresholds:		
AAT Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):		
CACT1 10 deg C		
IAT1	15 deg C	
EGRCOT	16 deg C	
ECT2	20 deg C	

Ambient Air Temperature Plausibility Check

An air temperature vs. environmental temp plausibility check is performed on each drive cycle. It compares the absolute difference of IAT1 and AAT, if the difference is greater than 50C for 5 minutes and vehicle speed is above 80.5 km/h, a fault is detected.

Ambient Air Temperature (AAT) Sensor Plausibility Check:			
DTCs	P009A - Intake Air Temperature / Ambient Air Temperature Correlation		
Monitor Execution	Continuous		
Monitor Sequence	None		
Sensors OK	Not applicable		
Typical Monitoring Duration	5 minutes		

Typical Ambient Air Temperature Sensor Plausibility Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Battery Voltage	8 V	15 V	
Vehicle Speed	80.5 km/h		
Coolant Temp	-35 deg C	121 deg C	
Environmental Temp	-35 deg C	80 deg C	
Key On			

Typical Ambient Air Temperature Sensor Plausibility Check Malfunction Thresholds:

If AT1 - AAT > 50 deg C for 5 minutes, a fault is detected and the code is set.

Charge Air Cooler (CACT1) Sensor Circuit Check:			
DTCs	P007C – Charge Air Cooler Temperature Sensor Circuit Low		
	P007D – Charge Air Cooler Temperature Sensor Circuit High		
Monitor execution	Continuous		
Monitor Sequence	None		
Sensors OK	Not applicable		
Typical Monitoring Duration	4 sec		

Typical Charge Air Cooler Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.092 V (161 deg C) or voltage > 4.90 V (-43 deg C)

Charge Air Cooler Temperature (CACT1) Rationality Check:		
DTCs	P007B - Charge Air Cooler Temperature Sensor Circuit Range/Performance	
Monitor Execution	Once per drive cycle. The check is disabled if a block heater is in use.	
Monitor Sequence	None	
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), EGT11 (P0548, P0549), EGRCOT (P040D, P040C), ECT (P0117, P0118), EOT (P0197, P0198), CACT1 (P007C, P007D)	
Typical Monitoring Duration	0.5 sec	

Typical Charge Air Cooler Temperature Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine Off Time	8hrs	
Coolant Temp	-35 deg C	121 deg C

Typical Charge Air Cooler Temperature Functional Thresholds:		
CACT1 Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):		
AAT	10 deg C	
IAT1	16 deg C	
EGRCOT	19 deg C	
ECT2	20 deg C	

Intake Air Temperature (IAT) Sensor Circuit Check:		
DTCs	P0112 - Intake Air Temperature Sensor Circuit Low	
	P0113 - Intake Air Temperature Sensor Circuit High	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	Not applicable	
Typical Monitoring Duration	4 sec.	

Typical Intake Air Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.10 volts (137 deg C) or voltage > 4.91 volts (-25 deg C)

Intake Air Temperature Rationality Check		
DTCs	P0111 – Temperature Sensor Circuit Range/Performance	
Monitor Execution	Once per drive cycle. The check is disabled if a block heater is in use.	
Monitor Sequence	None	
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), EGT11 (P0548, P0549), EGRCOT (P040D, P040C), ECT (P0117, P0118), EOT (P0197, P0198), CACT1 (P007C, P007D)	
Typical Monitoring Duration	0.5 sec	

Typical Intake Air Temperature Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine Off Time	8hrs	
Coolant Temp	-35 deg C	121 deg C

Typical Intake Air Temperature Functional Thresholds:		
IAT Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):		
AAT	15 deg C	
CACT1	16 deg C	
EGTCOT	20 deg C	
ECT2	20 deg C	

EGR Cooler Downstream Temperature (EGR COT) Sensor Circuit Check:		
DTCs	P040C – Exhaust Gas Recirculation Temperature Sensor Circuit Low	
	P040D – Exhaust Gas Recirculation Temperature Sensor Circuit High	
Monitor execution	Continuous	
Monitor Sequence	None	
Sensors OK	Not applicable	
Typical Monitoring Duration	3 sec.	

Typical EGR Cooler Downstream Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.10 volts (961 deg C) or voltage > 4.90 volts (-46 deg C)

EGR Cooler Downstream Temperature Rationality Check		
DTCs	P041B – Exhaust Gas Recirculation Temperature Sensor Circuit Range/Performance	
Monitor Execution	Once per drive cycle. The check is disabled if a block heater is in use.	
Monitor Sequence	None	
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), EGT11 (P0548, P0549), EGRCOT (P040D, P040C), ECT (P0117, P0118), EOT (P0197, P0198), CACT1 (P007C, P007D)	
Typical Monitoring Duration	0.5 sec	

Typical EGR Cooler Downstream Temperature Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine Off Time	8hrs	
Coolant Temp	-35 deg C	121 deg C

Typical EGR Cooler Downstream Temperature Functional Thresholds:		
EGRCOT Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):		
AAT	16 deg C	
CACT1	19 deg C	
IAT1	20 deg C	
ECT2	20 deg C	

Secondary Engine Coolant Temperature (ECT2) Sensor Circuit Check:	
DTCs	P2184 - Engine Coolant Temperature Sensor 2 Circuit Low
	P2185 - Engine Coolant Temperature Sensor 2 Circuit High
Monitor execution	Continuous
Monitor Sequence	None
Sensors OK	Not Applicable
Typical Monitoring Duration	2 sec.

Typical Secondary Engine Coolant Temperature Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
Key On		
Battery Voltage	8 V	15 V

Typical Secondary Engine Coolant Temperature Sensor Circuit Check Malfunction Thresholds: Voltage < 0.10 (163 deg C) volts or voltage > 4.91 volts (-44 deg C)

Secondary Engine Coolant Temperature Rationality Check	
DTCs	P2182 – Engine Coolant Temperature Sensor 2 Circuit
Monitor Execution	Once per drive cycle. The check is disabled if a block heater is in use.
Monitor Sequence	None
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), EGT11 (P0548, P0549), EGRCOT (P040D, P040C), ECT (P0117, P0118), EOT (P0197, P0198), CACT1 (P007C, P007D)
Typical Monitoring Duration	0.5 sec

Typical Secondary Engine Coolant Temperature Rationality Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Engine Off Time	8hrs		
Coolant Temp	-35 deg C	121 deg C	

Typical Secondary Engine Coolant Temperature Functional Thresholds:		
ECT2 Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):		
AAT	20 deg C	
CACT1	20 deg C	
IAT1	20 deg C	
EGRCOT	20 deg C	

Barometric Pressure and Manifold Absolute Pressure

Barometric Pressure (BP) Sensor Circuit Check:		
DTCs	P2227 – Barometric Pressure Sensor "A" Circuit Range/Performance	
	P2228 – Barometric Pressure Circuit Low Input	
	P2229 – Barometric Pressure Circuit High Input	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	Not applicable	
Typical Monitoring Duration	P2227 – 1 sec	
	P2228, P2229 –.5 sec.	

Typical Barometric Pressure Sensor Circuit Check Entry Conditions:			
Entry condition	Minimum	Maximum	
Battery voltage (IVPWR)	8V	15V	

Typical Barometric Pressure Sensor Circuit Check Malfunction Thresholds:

P2227 – Observed pressure less than 50 kPa

P2228 - Voltage less than 0.25 V. (6.3 kPa)

P2229 - Voltage greater than 4.85 V. (115 kPa)

Manifold Absolute Pressure (MAP) Sensor Circuit Check:		
DTCs	P0107 - Manifold Absolute Pressure/BARO Sensor Low Input	
	P0108 - Manifold Absolute Pressure/BARO Sensor High Input	
Monitor Execution	Continuous	
Monitor Sequence	None	
Sensors OK	Not applicable	
Typical Monitoring Duration	P0107, P0108 - 2 sec.	

Typical Manifold Absolute Pressure Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
Key-on		
Battery voltage (IVPWR)	8 V	15 V

Typical Manifold Absolute Pressure Sensor Circuit Check Malfunction Thresholds:

P0107 – Voltage less than .1 V (50 kPa)

P0108 – Voltage greater than 4.745 V (390 kPa)

Manifold Absolute Pressure (MAP) / Barometric Pressure (BP) Rationality Check:		
DTCs	P0069 – MAP/BARO Correlation	
Monitor Execution	Once per trip	
Monitor Sequence	None	
Sensors OK	BARO (P2228, P2229), MAP (P0107, P0108)	
Typical Monitoring Duration	1.5 sec.	

Typical MAP / BP Rationality Check Entry Conditions:		
Entry condition	Minimum	Maximum
P0069 - MAP / BARO Correlation:		
Key-on		
Battery voltage (IVPWR)	8 V	15 V
Engine Speed (N)	0 rpm	437.5 rpm

Typical MAP / BP Rationality Check Malfunction Thresholds:

P0069 - The difference between MAP and BARO is greater than 10 kPa, or less than -10 kPa.

Turbine Upstream Pressure Sensor Plausibility Checks

The turbine upstream pressure sensor has plausibility checks to make sure that the sensor is not stuck in a range. If the ambient pressure is above a threshold, the monitor determines if there is warm or cold weather based on engine coolant and environmental temperature. In the case of high altitude or cold weather, the engine off timer and difference between the engine coolant and environmental temperatures are compared to thresholds to determine if the pressure sensor may be frozen. At key-on the turbine upstream pressure sensor reading is compared with the ambient pressure sensor reading, if the difference is greater than a calibrated threshold an ambient offset error condition is flagged. If the sensor may be frozen, the engine is operated with reduced torque until the sensor is determined to be in a thawed state. Once thawed, the turbine upstream pressure sensor is compared with a modeled pressure under a calibrated threshold, then a model offset error is present and a malfunction is detected. If an ambient offset error at start is present when the sensor is not frozen, then a malfunction is detected. If a model offset error is not conducted under high transient mass airflow conditions, or at high altitude.

Turbine Upstream Pressure Sensor Plausibility Check Operation:		
DTCs	P006D– Barometric Pressure Turbocharger/Supercharger Inlet Pressure Correlation	
	P0471- Exhaust Pressure Sensor "A" Circuit Range/Performance	
Monitor execution	Once per driving cycle	
Monitor Sequence	None	
Monitoring Duration for stuck midrange	1.0 seconds to register a malfunction	

Detection of a Frozen Turbine Upstream Pressure Sensor		
For Frozen Condition:	Minimum	Maximum
Engine-off time (soak time)	480 min	
Engine Coolant Temperature		5°C
Ambient Air Temperature		5°C
Absolute difference between Ambient Air and Engine Coolant Temperature		20°C

Detection of a Thawed Turbine Upstream Pressure Sensor for Model Offset Plausibility Check:		
Entry Condition	Minimum	Maximum
Rate of change of Mass Airflow		100 kg/hr/sec
Engine Coolant Temperature		50°C
Ambient Air Temperature		5°C
Engine Speed	1500 rpm	3000 rpm
Engine Torque	500 N-m	750 N-m

Environmental Pressure	760 hPa	

Typical Upstream Turbine Pressure Sensor Plausibility Check Malfunction Thresholds:

P006D- (Turbine Pressure Sensor – Ambient Pressure Sensor) at Start > 80 hPa, and sensor is thawed then error is set

P0471 - (Turbine Pressure Sensor – Modeled Pressure) > 1000hPa, then sensor is stuck in range

Upstream Turbine Pressure Sensor Signal Range Check

Reductant Pressure Sensor Open/Short Check Operation:	
DTCs	P0472 - Exhaust Pressure Sensor "A" Circuit Low
	P0473 - Exhaust Pressure Sensor "A" Circuit High
Monitor execution	Continuous
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	2 seconds to register a malfunction

Typical Reductant Pressure Sensor Check Malfunction Thresholds:

Pressure sensor voltage < 0.100 volts or Pressure sensor voltage > 4.8 volts

EGR Valve Position Sensor

EGR Valve Position Sensor Check Operation:	
DTCs	P0405 (EGR Sensor "A" Circuit Low)
	P0406 (EGR Sensor "A" Circuit High)
Monitor execution	continuous
Monitor Sequence	none
Sensors OK	not applicable
Monitoring Duration	3 seconds to register a malfunction

Analog inputs checked for opens or shorts by monitoring the analog -to-digital (A/D) input voltage.

Typical EGR Valve position sensor check malfunction thresholds (P0405,P0406):

Voltage < 0.30 volts or Voltage > 4.70 volts

Throttle Position Sensor

Analog inputs checked for opens or shorts by monitoring the analog -to-digital (A/D) input voltage.

Throttle Position Sensor Check Operation:	
DTCs	P02E9 (Diesel Intake Air Flow Position Circuit High), P02E8 (Diesel Intake Air Flow Position Circuit Low).
Monitor execution	continuous
Monitor Sequence	none
Sensors OK	not applicable
Monitoring Duration	3 seconds to register a malfunction

Typical TP sensor check malfunction thresholds (P02E8,P02E9):	
Voltage < 0.08 volts or	Voltage > 4.92 volts

EGR Downstream Temperature Sensor Dynamic Plausibility Check

The EGR Downstream temperature sensor rationality test checks to make sure that the sensor is not stuck in a range that causes other OBD to be disabled. If after a long (8 hour) soak and ECT < 70° C, then the temp at start is compared to the temp after a calibrated elapsed runtime. If the change in temperature downstream of the EGR cooler is below the minimum calibrated threshold (5° C), then the sensor is assumed to be stuck in range.

EGR Downstream Temperature Sensor Dynamic Plausibility Check Operation:		
DTCs	P040B – EGR Temperature Sensor "A" Circuit Range/Performance	
Monitor execution	Once per driving cycle	
Monitor Sequence	None	
Monitoring Duration for stuck midrange	0.5 seconds to register a malfunction	

Typical EGR Downstream Temperature Sensor Dynamic Plausibility check entry conditions:		
Entry Condition	Minimum	Maximum
Engine-off time (soak time)	480 min	
Engine run timer	300 sec	
Engine Coolant Temperature	70°C	
Engine Coolant Temperature at Start		70°C
Engine Speed	1000 rpm	3000 rpm
Engine Torque	100 N-m	300 N-m
EGR Valve Positions (Actual)	10%	60%

Typical EGR Downstream Temperature Sensor Plausibility check malfunction thresholds:

TEGRDs (at 300 sec) – TEGRDs (at Start) < $dtMinDyn (5^{\circ}C)$ then sensor is stuck in range.

Engine Coolant & Engine Oil Correlation

The engine coolant temperature sensor reading and engine oil temperature sensor readings are tested for plausibility once per drive cycle after a long soak (8hrs or more). The values of the coolant and oil temperature sensor readings are recorded at start up. Once it has been determined that the enable conditions have been achieved, upper and lower thresholds are determined based on the engine-off time. The difference of the initial oil and coolant temperatures are compared to this threshold. If the lower threshold is not achieved, a fault is reported. If the lower threshold is met, but the upper threshold is not achieved and a block heater is not in use, a fault is reported. If a block heater is detected, the plausibility test does not report a fault.

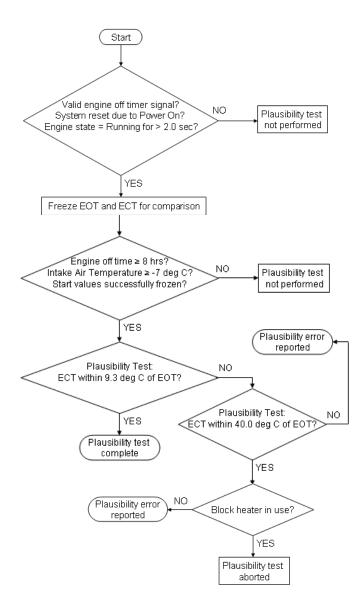


Figure #: ECT/EOT Plausibility Correlation Test Flow Chart

Engine Coolant Temperature (ECT) Sensor Circuit Check:	
DTCs	P0117 - Engine Coolant Temperature Sensor Circuit Low
	P0118 - Engine Coolant Temperature Sensor Circuit High
Monitor execution	Continuous
Monitor Sequence	None
Sensors OK	Not Applicable
Typical Monitoring Duration	2 sec.

Typical Engine Coolant Temperature Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
Key On		
Battery Voltage	8v	15v

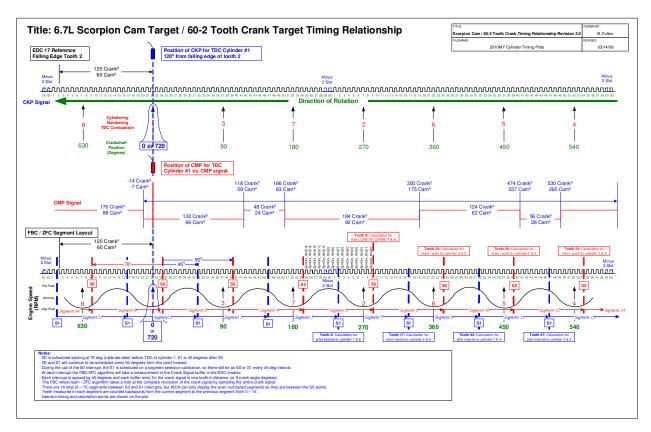
Typical Engine Coolant Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.10 (163 deg C) volts or voltage > 4.91 volts (-44 deg C)

Engine Coolant Temperature Rationality Check	
DTCs	P012F – Engine Coolant Temperature / Engine Oil Temperature Correlation
Monitor Execution	Once per drive cycle.
Monitor Sequence	None
Sensors OK	AAT (P0072, P0073), IAT1 (P0112, P0113), ECT (P0117, P0118), EOT (P0197, P0198)
Typical Monitoring Duration	Immediate when conditions exist

Typical Engine Coolant Temperature Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Engine Off Time	8 hrs	
Intake Air Temp	-7 deg C	
Engine "Running" Time	2 sec	

Typical Engine Coolant Temperature Functional Thresholds:	
ECT Rationality is confirmed against EOT:	
Absolute Temperature Difference	15 deg C


Engine Oil Temperature (EOT) Sensor Circuit Check:	
DTCs	P0197 - Engine Oil Temperature Sensor Circuit Low
	P0198 - Engine Oil Temperature Sensor Circuit High
Monitor execution	Continuous
Monitor Sequence	None
Sensors OK	Not Applicable
Typical Monitoring Duration	2 sec.

Typical Engine Oil Temperature Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
Key On		
Battery Voltage	8v	15v

Typical Engine Oil Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < 0.10 (163 deg C) volts or voltage > 4.91 volts (-44 deg C)

Cam and Crank Sensor:

Camshaft and Crank	shaft Sensor Monitor Operation:
DTCs	 P0016 – Crankshaft Position - Camshaft Position Correlation (Bank 1 Sensor A) P0315 – Crankshaft Position System Variation Not Learned P0335 – Crankshaft Position Sensor "A" Circuit P0336 – Crankshaft Position Sensor "A" Circuit Range/Performance P0340 – Camshaft Position Sensor "A" Circuit (Bank 1 or single sensor) P0341 – Camshaft Position Sensor "A" Circuit Range/Performance (Bank 1 or single sensor) P0341 – Camshaft Position Sensor "A" Circuit Range/Performance (Bank 1 or single sensor)
Monitor Execution	P0016 – Continuous P0315 – Continuous P0335 – Continuous P0336 – Continuous P0340 – Continuous P0341 – Continuous
Monitor Sequence	None
Sensors OK	P0016 – Sensor Supply Voltage 1 (P06A6), Sensor Supply Voltage 2 (P06A7) P0315 – Sensor Supply Voltage 1 (P06A6), Crankshaft Sensor (P0335, P0336) P0335 – Sensor Supply Voltage 1 (P06A6) P0336 – Sensor Supply Voltage 1 (P06A6) P0340 – Sensor Supply Voltage 2 (P06A7) P0341 – Sensor Supply Voltage 2 (P06A7) P0341 – Sensor Supply Voltage 2 (P06A7)
Typical Monitoring Duration	P0016 – 3.6 sec ,P0315 – 5000 sec of overrun/decel fuel shut-off P0335 – 1.8 sec, P0336 – 1.8 sec, P0340 – 3 sec, P0341 – 1.2 sec

Typical Camshaft and Crankshaft Sensor Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
P0016 – Engine running or cranking		
P0315 – Overrun/decel fuel shut-off		
P0335 – Engine running or cranking		
P0336 – Engine running or cranking		
P0340 – Engine running or cranking		
P0341 – Engine running or cranking		

Typical Camshaft Sensor Monitor Malfunction Thresholds:

P0016 – If the location of the gap on the crankshaft sensor wheel occurs at a location on the camshaft sensor wheel that is more than 18 degrees from the expected location for two detection attempts, the code is set

P0315 – If after 5000 total seconds of overrun/decel fuel shut-off, the system has been unable to learn crankshaft wheel deviation corrections, the code is set

P0335 – If no signal is detected from the crankshaft sensor, the code is set

P0336 – If the gap in the 60-2 tooth wheel is not detected for three revolutions, the code is set

P0340 - If no signal is detected from the camshaft sensor, the code is set

P0341 – If the segment profile detected does not match the segment profile shown in the figure above, the code is set

Fan:

Fan Actuator Checks:	
DTCs	P0480 – Fan 1 Control Circuit
	P0691 – Fan 1 Control Circuit Low
	P0692 – Fan 1 Control Circuit High
Monitor Execution	P0480, P0691, P0692 – Continuous
Monitor Sequence	None
Sensors OK	None
Typical Monitoring Duration	P0480, P0691 – 2 seconds
	P0692 – 1 second

Typical Fan and Fan Speed Sensor Malfunction Thresholds:

P0480 – Open circuit of fan actuator detected by IC internal logic

P0691 – Short circuit to ground of fan actuator detected by IC internal logic

P0692 – Short circuit to battery of fan actuator detected by IC internal logic

Fan Speed Sensor Checks:	
DTCs	P0483 – Fan Performance
	P0494 – Fan Speed Low
	P0495 – Fan Speed High
	P0529 – Fan Speed Sensor Circuit Intermittent
Monitor Execution	P0483, P0494, P0495, P0529 – Continuous
Monitor Sequence	None
Sensors OK	None
Typical Monitoring Duration	P0483, P0494, P0495 – 2 seconds
	P0529 – 1.5 seconds

Typical Fan and Fan Speed Sensor Check Entry Conditions:		
Entry condition	Minimum	Maximum
P0495:		
Engine running		
P0483, P0494, P0529:		
Engine speed (rpm)	500 (minimum allowable speed for idle speed monitoring)	
Requested fan speed	>0	

Typical Fan and Fan Speed Sensor Malfunction Thresholds:
--

P0483 – Detected fan acceleration exceeds 5000 rpm/second

P0494 – Detected fan speed below 90 rpm (96 rpm is minimum fan speed with fan clutch open)

P0495 – Detected fan speed above 6000 rpm

P0529 – No fan speed sensor signal detected

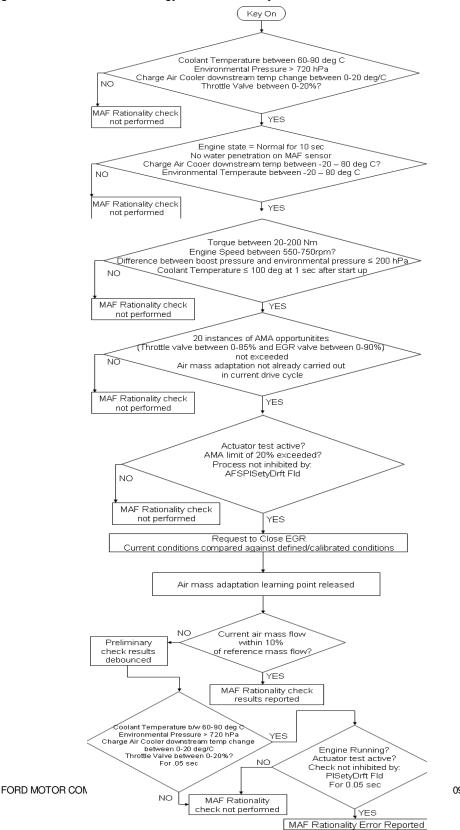
Mass Air Meter

The 6.7L engine utilizes a frequency-based hot film air meter. The digital output varies its period to indicate a change in mass air flow. If the period is outside of a specified range, a fault is detected and the appropriate P-code is set.

MAF Sensor Circuit Check:	
DTCs	P0100 – Mass or Volume Air Flow "A" Circuit
	P0102 – Mass or Volume Air Flow "A" Circuit Low
	P0103 – Mass or Volume Air Flow "A" Circuit High
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	Not applicable
Typical Monitoring Duration	P0100 – 1.5 sec
	P0102 – 2 sec
	P0103 – 2 sec

MAF Sensor Circuit Check Entry Conditions:		
Entry condition	Minimum	Maximum
Battery voltage	8V	15V
Key on		

MAF Sensor Circuit Check Malfunction Thresholds:


P0100 - hard coded, not visible in software

P0102 – period less than 62 us

P0103 - period greater than 4000 us

MAF Rationality Check

A rationality check of the mass air flow sensor is performed each time an air mass adaption (AMA) executes. AMA adapts at two points- one at idle, the other at a specific speed/load. The ratio between the mass air flow and the reference mass air flow is calculated with the EGR valve in the closed position. This ratio is compared against a threshold once AMA has been released. The release of this plausibility check occurs under strict engine operating and environmental conditions to minimize the affect of outside influences on mass air flow. At each AMA event, the corrected value is stored for each point. These stored values are compared to a threshold, if the stored values are greater than a threshold a fault is detected, as the air meter has drifted outside of its nominal operating range. The figure below outlines the strategy for the rationality check.

09.01.00.02-PAGE 96 OF 157

Mass Air Flow Sensor Functional Check Operation:	
DTCs	P2073 – Manifold Absolute Pressure/Mass Air Flow - Throttle Position Correlation at Idle
	P2074 – Manifold Absolute Pressure/Mass Air Flow - Throttle Position Correlation at Higher Load
Monitor Execution	Once per drive cycle
Monitor Sequence	None.
Sensors OK	MAF (P0100, P0101, P0102), BP (P2228, P2229), EGRP (P0405, P0406, P0404, P0042E, P042F, P1335),
Typical Monitoring Duration	Continuous

Typical Mass Air Flow Sensor Fun	ctional Check Entry Conditions:	
Entry condition	Minimum	Maximum
Barometric Pressure	75 kPa	110 kPa
Engine Coolant Temperature	70 deg C	90 deg C
Throttle Valve	0%	20%
CAC Downstream Temperature	-20 deg C	80 deg C
Ambient Air Temperature	-20 deg C	80 deg C
Time engine running Normal	10 seconds	
No Water Penetration Detected in Sensor		
Engine Coolant Temperature at 1 second after key on		100 deg C
Difference in Barometric Pressure versus Pressure in Induction Volume		20 kPa
Engine Torque	20 Nm	200 Nm
Engine Speed	550 rpm	750 rpm

Typical Mass Air Flow Sensor Functional Check Malfunction Thresholds:

If the final AMA stored value in either the idle or higher load cell is greater than 20% or less than -20%, a fault is detected and the appropriate P-code is set.

Mass Air Flow Sensor Plausibility Check Operation:		
DTCs	P1102 – Mass Air Flow Sensor In Range But Lower Than Expected	
	P1103 – Mass Air Flow Sensor In Range But Higher Than Expected	
Monitor Execution	Continuous	
Monitor Sequence	None.	
Sensors OK	MAF (P0100, P0101, P0102), BP (P2228, P2229), EGRP (P0405, P0406, P0404, P0042E, P042F, P1335),	
Typical Monitoring Duration	10 seconds	

Typical Mass Air Flow Sensor Plausibility Check Entry Conditions:		
Entry condition	Minimum	Maximum
Barometric Pressure	75 kPa	110 kPa
Engine Coolant Temperature	70 deg C	121 deg C
Ambient Air Temperature	-20 deg C	80 deg C
Time engine running Normal	5 seconds	
Key On		

Typical Mass Air Flow Sensor Plausibility Check Malfunction Thresholds:

If Mass Air Flow is greater than AFS_dmMinThresMoB1, or less than AFS_dmMaxThresMoB1 for 10 seconds, a fault is detected and a P-code is set.

Minimun	n AFS ⁻	Thresh	old Map)				
RPM	400	600	1000	1500	2000	2500	3000	3500
Airflow	0	25	100	130	130	150	180	210

Maximur	n AFS	Thresh	old Map			_		
RPM	600	750	1000	1500	2000	2500	3000	3500
Airflow	300	400	540	850	1100	1350	1550	1550

DEF Pressure Sensor

The DEF pressure control system uses the measured DEF pressure in a feedback control loop to achieve the desired DEF pressure. The DEF injection algorithm uses actual DEF pressure in its computation of DEF injector pulse width.

The DEF sensor is a gauge sensor. Its atmospheric reference hole is near the electrical connector. The DEF pressure sensor has a nominal range of 0 to 0.8 MPa (0 to 8 bar, 0 to 116 psi). This pressure range is above the maximum intended operating pressure of 0.5 MPa. The sensor voltage saturates at slightly above 0.5 and slightly below 4.5 volts.

DEF Pressure Sensor

DEF pressure is often a vacuum when the system purges after running. Vacuums cannot be measured by the DEF pressure gauge sensor as voltages will not be lower than 0.5 Volts.

	DEF Pressure Sensor Transfer Function				
DE	DEF Pump Pressure (PSI) = 29 * Voltage - 14.5				
Volts	Pressure, MPa (gauge)	Pressure, psi (gauge)			
5.00	0.8	116			
4.50	0.8	116			
3.50	0.6	87			
2.50	0.4	58			
1.00	0.1	14			
0.500	0.0	0			
0.250	0.0	0			

Reductant Pressure Sensor Signal Range Check

Reductant Pressure Sensor Open/Short Check Operation:		
DTCs	P204C - Reductant Pressure Sensor Circuit Low	
	P204D - Reductant Pressure Sensor Circuit High	
Monitor execution	Continuous	
Monitor Sequence	none	
Sensors OK	none	
Monitoring Duration	0.4 seconds to register a malfunction	

Typical Reductant Pressure Sensor Check Malfunction Thresholds:

Pressure sensor voltage < 0.20 volts or Pressure sensor voltage > 4.8 volts

A reductant Pressure Sensor that is substantially in error results in a DEF system fault (over or under injection). If actual DEF pressure exceeds measured pressure, more DEF than that which would be expected is injected and vice versa. This error would show up in the long term adaption trim (DEF LTA).

Reductant Pressure Plausibility Check before Start-up

If the hydraulic circuit of the DEF system (pump, pressure line, & injector) is completely empty, i.e. purge cycle was successfully completed during previous drive cycle, the DEF pressure is expected to read 0 kPa. Based on sensor tolerances the deviation from zero is limited to 30 kPa.

Reductant Pressure Plausibility Check Operation:		
DTCs	P204B (SRC error for Reductant Pressure Sensor)	
Monitor execution	Continuous, prior to pressure build-up	
Monitor Sequence	P204B is inhibited by active P204C or P204D codes	
Sensors/Actuators OK	none	
Monitoring Duration	0.6 seconds to register a malfunction	

Typical Reductant Pressure Plausibility Check Entry Conditions:		
Entry Condition	Minimum	Maximum
DEF pump and line not primed		0
DEF system not pressurized		
DEF tank and pump not frozen	True	

Typical Reductant Pressure Plausibility Check Malfunction Thresholds:

P204B: > 30 kPa for 0.6 sec

DEF Pressure Build-up Check at Start-up

After the fill cycle is completed, the injector is closed and the system pressure is expected to rise.

Reductant Pressure Functional C	heck:
DTCs	P20E8 – Reductant Pressure too Low
Monitor execution	Once during pressure build-up
Monitor Sequence	P20E8 is inhibited by active P204B, P204C or P204D codes
Sensors/Actuators OK	Reductant pressure sensor, Reductant pump motor, injector
Monitoring Duration	1 event (3 times 15 seconds)

Typical Reductant Pressure Plausibility Check Entry Conditions:		
Entry Condition	Minimum	Maximum
DEF pump and line not primed		0
DEF system not pressurized		
DEF tank not frozen	True	

Typical Reductant Pressure Plausibility Check Malfunction Thresholds:

P204B: pressure does not exceed 350 kPa after 45 sec with spinning pump

DEF System Pressure Control

DEF pressure is maintained via:

• Feedback knowledge of sensed pressure.

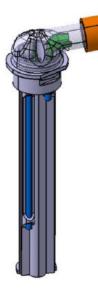
A set point pressure is determined by engine operating conditions (500 kPa over exhaust backpressure). If a pressure increase is desired, the urea pump motor speed is increased by increasing the PWM output. Pressure decreases are analogous; as the system has a backflow throttle, pressure will decrease to 0 unless the pump motor in run continuously.

Reductant Pressure Control (Normal) Functional Check Operation:		
DTCs	P20E8 - Reductant Pressure Too Low	
	P20E9 - Reductant Pressure Too High	
Monitor execution	Continuous	
Monitor Sequence	P20E8 & P20E9 are inhibited by active P204b, P204C or P204D codes	
Sensors/Actuators OK	reductant pump pressure sensor, reductant pump motor, reductant injector	
Monitoring Duration	> 10 sec (resp. > 60 sec, see below)	

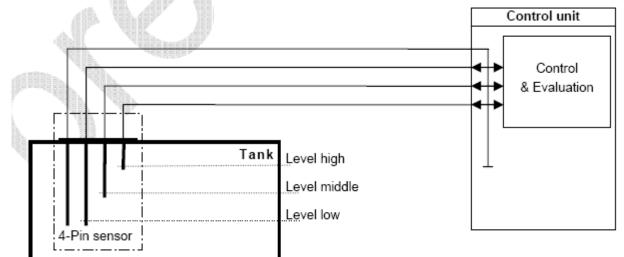
Typical Reductant Pressure Control (Normal) Functional Check Entry Conditions:		
Entry Condition	Minimum	Maximum
DEF system pressure in closed loop control previously	True	

Typical Reductant Pressure Control (Normal) Functional Check Malfunction Thresholds:

P20E8: < 400 kPa for 60 sec respectively < 300 kPa for 10 sec


P20E9: > 650 kPa for 10 sec respectively > 790 kPa for 1 sec

Reductant Tank Level Sensor


The task of the discrete level sensor is to measure the tank level at 3 different heights. The determination of a reductant level is limited to liquid reductant. Frozen reductant cannot be detected. The measured level will be used to update the calculation of remaining quantity in the reductant tank.

The level sensor consists of four high-grade stainless steel pins. The length of each pin defines the tank level (height) which is to be checked. Only three pins can be used for level evaluation. The fourth pin is used as ground pin. Due to the electrical conductivity of Urea the level sensor will determine whether the tank level is above or below the respective level sensor position. This information will be directly evaluated by the ECU.

Reductant Tank Level Sensor:

Reductant Tank Level Sensor Circuit Tree:

Reductant Tank Level Sensor Circuit Checks

Reductant Tank Level S	ensor Open/Short Check Operation:
DTCs	P203D - Reductant Level Sensor "A" Circuit High (SRC max - pin 1 & SCB)
	P21AB - Reductant Level Sensor "B" Circuit High (SRC max - pin 2)
	P21B0 - Reductant Level Sensor "C" Circuit High (SRC max - pin 3)
	P203A - Reductant Level Sensor Circuit (OL)
	P203C - Reductant Level Sensor Circuit Low (SCG)
Monitor execution	Continuous, every 4 seconds (3x 1 sec to read from each individual pin, 1 sec for diagnosis)
Monitor Sequence	None
Sensors OK	None
Monitoring Duration	0.5 seconds to register a malfunction within diagnostic mode

Typical Tank Level Sensor Open/Short Check Malfunction Thresholds:

P203D, P21AB & P21B0: voltage > 3.24 Volts (Signal range check max. for pin 1, 2 & 3)

P203D: no calibration thresholds available, SCB fault information is sent directly from power stage

P203C: no calibration thresholds available, SCG fault information is sent directly from power stage

P203A: no calibration thresholds available, OL fault information is sent directly from power stage

The Reductant Tank Level Sensor and the Reductant Tank Temperature Sensor share the same ground wire. Therefore an open load or short circuit to battery on the ground wire (reference pin) will set codes for both sensors.

Reductant Tank Level Sensor Plausibility Check

If a certain level pin is covered by liquid all pins below this level should be covered as well and send the same information. If this is not the case, an error flag will be set.

Reductant Tank Level Sensor Plausibility Check Operation:				
DTCs	P203B – Reductant Level Sensor Circuit Range/Performance			
Monitor execution	Continuous			
Monitor Sequence	none			
Sensors/Actuators OK	Reductant Level sensor signal range checks			
Monitoring Duration	60 seconds to register a malfunction			

Typical Reductant Tank Level Sensor Plausibility Check Malfunction Thresholds:

no calibration thresholds available

Reductant Tank Temperature Sensor

The Reductant Tank Temperature sensor is mounted internal to the Reductant Tank Level Sensor. It is used to control the activation of the Reductant Tank Heater as well as an enabler to the Level Sensor (which cannot read level when the reductant is frozen).

Transfer Function

Temperature Deg C	Resistance (Ohms)
-40	336
-30	177
-20	97
-10	55
0	32
10	20
20	12
30	8
40	5.3
50	3.6
60	2.5
70	1.8
80	1.2

Reductant Tank Temperature Circuit Range Check		
DTCs	P205C Reductant Tank Temperature Sensor Circuit Low	
	P205D Reductant Tank Temperature Sensor Circuit High	
Monitor execution	continuous	
Monitor Sequence	none	
Sensors OK	not applicable	
Monitoring Duration	0.4 seconds to register a malfunction	

Typical Intake Reductant Tank Temperature Circuit Range Check Malfunction Thresholds

P205C: voltage < 0.097 Volts

P205D: voltage > 3.201 Volts

Plausibility Check

On every cold start of the vehicle (min. soak time > 6 hours) the value of the tank temperature sensor is expected to be close to the environmental temperature.

Reductant Tank Temperature Plausibility Check			
DTCs	P2043 Reductant Temperature Sensor Circuit Range/Performance		
Monitor execution	At cold start conditions / extended soak time		
Monitor Sequence	P2043 is inhibited by active P205C or P205D codes		
Sensors OK	Ambient temp sensor, exhaust gas temp. sensor upstream SCR catalyst, engine coolant temperature sensor (downstream)		
Monitoring Duration	counts intermittent events per trip		

Typical Reductant Tank Temperature Plausibility Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Engine off timer	6 hours		
Reductant Tank Fluid level	10 %	100 %	
Max (ambient temp, SCR catalyst temp., engine coolant temp.) - Min (ambient temp., SCR catalyst temp., engine coolant temp.)		10 deg C	

Typical Reductant Tank Temperature Plausibility Check Malfunction Thresholds

Reductant tank temperature – ambient temperature > 20 deg C or < -20 deg C

Exhaust Gas Temperature Sensor Rationality Test

Each EGT Sensor is checked continuously for proper circuit continuity and out of range high values. In addition, a rationality test is performed once every drive cycle, after a soak of 6 hours or greater. The rationality test consists of two components, the first being a comparison against modeled values, and the second being a key-on 5-way temperature sensor comparison. At key-on, a temperature sample is taken of each of the following sensors: Ambient Air (AAT), Exhaust Gas Temperature (EGT11), Exhaust Gas Temperature (EGT12), Exhaust Gas Temperature (EGT13), and Exhaust Gas Temperature (EGT14). Once the engine starts and a cold start has been confirmed, the model comparison tests begin. The model comparison tests ensure that each sensor correlates with an expected modeled value, and a fault is set if the difference is significant and persistent. When the model comparison tests are complete, the temperature samples from key-on are compared against each other, and the temperature differences are compared against a threshold. One sensor must fail key-on plausibility with four other sensors to set a fault. If two sensors fail plausibility with three other sensors a general fault is set (P117B). The rationality tests rely on entry conditions that include engine operation time, minimum modeled temperature, minimum engine coolant, and minimum engine torque. Once the entry conditions have been met, the model comparisons continue for several minutes to ensure a robust detection. The modeled value for EGT11 is based on Modeled Turbo Temperatures. The modeled value for EGT12 is based on EGT11. The modeled value for EGT13 is based on EGT12. The modeled value for EGT14 is based on EGT13.

Exhaust Gas Temperature (EG	T) Sensor Circuit Check:
DTCs	P0545 – Exhaust Gas Temperature Circuit Low (Sensor 1)
	P0546 – Exhaust Gas Temperature Sensor Circuit High (Sensor 1)
	P2478 – Exhaust Gas Temperature Out Of Range (Sensor 1)
	P2032 – Exhaust Gas Temperature Circuit Low (Sensor 2)
	P2033 – Exhaust Gas Temperature Sensor Circuit High (Sensor 2)
	P2479 – Exhaust Gas Temperature Out Of Range (Sensor 2)
	P242C – Exhaust Gas Temperature Circuit Low (Sensor 3)
	P242D – Exhaust Gas Temperature Sensor Circuit High (Sensor 3)
	P247A – Exhaust Gas Temperature Out Of Range (Sensor 3)
	P2470 – Exhaust Gas Temperature Circuit Low (Sensor 4)
	P2471 – Exhaust Gas Temperature Sensor Circuit High (Sensor 4)
	P247B – Exhaust Gas Temperature Out Of Range (Sensor 4)
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	Not applicable
Typical Monitoring Duration	2 sec.

Typical Exhaust Gas Temperature Sensor Circuit Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Battery Voltage	8v	15v	
Key On			

Typical Exhaust Gas Temperature Sensor Circuit Check Malfunction Thresholds:

Voltage < .10 volts or voltage > 4.90 volts

Out Of Range test is based on Engineering Units and is high-side only. The Out Of Range Threshold is typically set to 1100 deg C. Transfer function of the sensors does not allow for unique circuit range and engineering range thresholds on the low-side.

The Exhaust Gas Temperature Sensor is a PTC Thermistor that provides an analog output voltage proportional to the exhaust gas temperature. This EGT sensor is capable of being used anywhere in the exhaust gas stream. Some possible applications are listed below:

EGT	Exhaust Gas Temp
EGR_CIT	EGR Cooler Inlet Exhaust Gas Temp
EGR_COT	EGR Cooler Outlet Exhaust Gas Temp
DPF_IN	Diesel Particualte Filter Inlet Exhaust Gas Temp
DPF_OUT	Diesel Particulate Filter Outlet Exhaust Gas Temp
SCR_IN	SCR Inlet Exhaust Gas Temp
SCR_OUT	SCR Outlet Exhaust Gas Temp

EGT Sensor Transfer	Function		
	Vout = (Vref * R senso	r) / (1K + R sensor)	
Respons	e Time: 1 time constant = 15 sec f	or 300 deg C step @ 10)m/sec gas flow
Volts	A/D Counts in PCM	Ohms	Temperature, deg C
0.10		short circuit	n/a
0.73		171	-40
0.84		202	0
1.09		277	100
1.30		350	200
1.48		421	300
1.64		490	400
1.79		556	500
1.91		619	600
2.02		691	700
2.13		740	800
2.17		768	850
			1100
4.90		open circuit	n/a

Exhaust Gas Temperature Rationality Check		
DTCs	P0544 – Exhaust Gas Temperature Sensor Circuit (Sensor 1)	
	P2031 – Exhaust Gas Temperature Sensor Circuit (Sensor 2)	
	P242A – Exhaust Gas Temperature Sensor Circuit (Sensor 3)	
	P246E – Exhaust Gas Temperature Sensor Circuit (Sensor 4)	
	P117B – Exhaust Gas Temperature Sensor Correlation	
Monitor Execution	Once per driving cycle.	
Monitor Sequence	Correlation Test completes after the Model Comparison Tests.	
Sensors OK		
Typical Monitoring Duration	Model Comparison Test Monitor Duration is 100 to 300 seconds.	

Typical Exhaust Gas Tempe	erature Rationality Check Entry Co	nditions:	
Entry Condition	Minimum	Maximum	
Engine Off Time	4 hrs	N/A	
Coolant Temp	66 deg C	N/A	
Engine Run Time	300 seconds		
Modeled Sensor Temp	170 deg C for EGT11		
	150 deg C for EGT12		
	130 deg C for EGT13		
	110 deg C for EGT14		
Engine Torque	100 Nm		

Typical Exhaust	Gas Temperature	Rationality Che	eck Thresholds:

Each EGT Rationality is confirmed against 4 other sensors (absolute temperature difference thresholds):

Key-On Comparison Threshold	50 deg C
Modeled Comparison Threshold	150 deg C for EGT11, 100 deg C for EGT12, 50 deg C for EGT13, 50 deg C for EGT14
Modeled Comparison Duration	Comparison Test will run for 100 to 300 seconds. Fault must persist for 30 seconds for robust detection.

Diesel Particulate Filter Pressure Sensor Rationality Test

The DPFP Sensor is checked continuously for proper circuit continuity, rationality, and expected dynamic behavior. The rationality test compares the raw DPFP value in engineering units to a threshold, with the expectation that there will be a minimum pressure observed whenever sufficient exhaust flow is present. An additional rationality test compares the measured change in DPFP to an expected change, which is based on changing exhaust flows. If exhaust flow is increasing, the change in DPFP is expected to be increasing. If exhaust flow is decreasing, the change in DPFP is expected to be decreasing. The dynamic test runs continuously as long as exhaust flows are sufficiently dynamic. The fault threshold in kPa is a function of changing exhaust flow.

Diesel Particulate Filter Pressure (DPFP) Sensor Circuit Check:	
DTCs	P2454 – DPFP Sensor Circuit Low
	P2455 – DPFP Sensor Circuit High
Monitor Execution	Continuous
Monitor Sequence	None
Sensors OK	Not applicable
Typical Monitoring Duration	2 sec.

Typical Diesel Particulate Filter Pressure Sensor Circuit Check Entry Conditions:			
Entry Condition	Minimum	Maximum	
Battery Voltage	8v	15v	
Key On			

Typical Diesel Particulate Filter Pressure Sensor Circuit Check Malfunction Thresholds:

Voltage < .10 volts or voltage > 4.90 volts

The DPFP sensor is a single port gauge sensor that provides an analog output voltage that is proportional to pressure and is typically used before and after a DPF (Diesel Particulate Filter) to monitor the differential pressure.

DPFP Sensor Transfer Function			
DPFP	DPFP volts = 0.082 * kPaG Delta Pressure) + 0.45		
Volts	A/D Counts in PCM	Delta Pressure, kPa Gauge	
0.10	20	-4.3	
0.45	92	0	
1.27	260	10	
2.09	428	20	
2.91	595	30	
3.73	763	40	
4.55	931	50	
4.90	1003	54.3	

Diesel Particulate Filter Pressure Sensor Rationality Check		
DTCs	P2453 – DPFP Sensor Circuit Range/Performance	
	P2456 – DPFP Sensor Circuit Intermittent/Erratic	
Monitor Execution	Continuous.	
Monitor Sequence	None.	
Sensors OK		
Typical Monitoring Duration	2 seconds.	

Typical Diesel Particulate Filter Pressure Sensor Rationality Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Exhaust Volume	500 m3/hour	None.
Dynamic Exhaust Volume	> 100 m3/h/s or < -100 m3/h/s	None.

Typical Diesel Particulate Filter Pr	essure Sensor Rationality Check Thresholds:
Performance Threshold	1 kPa minimum for exhaust flows > 500 m3/hour
Dynamic Threshold	The threshold for the dynamic test is a function of dynamic exhaust flow. Typical values range from 0.1 kPa at 100 m3/h/s to 2 kPa at 800 m3/h/s.

Diesel Particulate Filter Pressure Offset Test

The DPFP Sensor is checked during after-run conditions (period where the key is turned off, however the ECU is still powered), to verify that the sensor has not drifted from the ambient with no exhaust flow. This test is performed by comparing the sensed pressure to a threshold (due the the gauge sensor, this value should be 0)

Diesel Particulate Filter Pressure Sensor Offset Check	
DTCs	P2452 – DPFP Sensor Circuit "A"
Monitor Execution	Afterrun
Monitor Sequence	None.
Sensors OK	DPFP Sensor
Typical Monitoring Duration	1 second.

Typical Diesel Particulate Filter Pressure Sensor Offset Check Thresholds:

Exhaust Pressure Sensor value > 10hPa

Engine Outputs

EGR Valve Actuator Signal Range Check

The diagnostics for the circuit range check on the pwm signal to the EGR valve are internal to the h-bridge PWM power-stage. Open load, short-circuit to ground, and short-circuit to battery are detected on both the positive and negative control lines to the actuator.

EGR Valve Actuator Open-Load (P0490) Check Operation:	
DTCs	P0490 – EGR "A" Control Circuit High
Monitor execution	At start; when Power-stage is OFF and if Jammed Valve is detected.
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction

EGR Valve Actuator Short Circuit (P0489/P0490) Check Operation:	
DTCs	P0489 – EGR "A Control Circuit Low,
	P0490 – EGR "A" Control Circuit High
Monitor execution	Continuous; when Power-stage ON
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction.

EGR Valve Actuator Jammed Detection

The EGR valve has a component level diagnostic to make sure that the valve is not stuck or sticking in a manner such that it cannot reach the desired position. The monitor runs if a jammed valve is not already detected, position control is in closed-loop control, and adaptive learning is not active. A minimum engine speed is used as an entry condition.

If the position governor deviation is above a maximum calibrated threshold then an output ramp for the detection of a permanent positive control fault begins. It the output ramp reaches a calibrated threshold then a jammed valve malfunction is detected. Similarly, if the position governor deviation is below a minimum calibrated threshold then an output ramp for the detection of permanent negative control deviation begins. If the output ramp reaches a calibrated threshold then an output ramp for the detection of permanent negative control deviation begins. If the output ramp reaches a calibration threshold then a jammed valve is detected,

EGR Valve Jammed Check Operation:		
DTCs	P04DA – Closed Loop EGR Control At Limit – Flow Too High, P04D9 – Closed Loop EGR Control At Limit – Flow Too Low	
Monitor execution	Continuous	
Monitor Sequence	None	
Monitoring Duration	10 seconds to register a malfunction	

Typical Actuator Jammed Valve Entry Conditions:		
Entry Condition	Minimum	Maximum
Governor Active (closed-loop position control)		
Adaptive Learning Not Active		
Jammed Valve Fault Not Present on Actuator		
RPM	700 rpm	

Typical EGR Valve Jammed Check (P04DA/P04D9) Malfunction Thresholds:

EGRVlv_rGovDvt > 8.60

Throttle Valve Actuator Signal Range Check

The diagnostics for the circuit range check on the pwm signal to the throttle valve are internal to the h-bridge PWM power-stage. Open load, short-circuit to ground, and short-circuit to battery are detected on both the positive and negative control lines to the actuator.

Throttle Valve Actuator Open-Load (P02E0) Check Operation:

DTCs	P02E0 – Diesel Intake Air Flow Control Circuit / Open
Monitor execution	At start; when Power-stage is OFF and if Jammed Valve is detected.
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction

Throttle Valve Actuator Short Circuit (P02E2/P02E3) Check Operation:	
DTCs	P02E2- Diesel Intake Air Flow Control Circuit Low; P02E3- Diesel Intake Air Flow Control Circuit High
Monitor execution	Continuous; when power stage ON
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction.

Throttle Valve Actuator Jammed Detection

The throttle valve has a component level diagnostic to make sure that the valve is not stuck or sticking in a manner such that it cannot reach the desired position. The monitor runs if a jammed valve is not already detected, position control is in closed-loop control, and adaptive learning is not active. A minimum engine speed is used as an entry condition.

If the position governor deviation is above a maximum calibrated threshold then an output ramp for the detection of a permanent positive control fault begins. It the output ramp reaches a calibrated threshold then a jammed valve malfunction is detected. Similarly, if the position governor deviation is below a minimum calibrated threshold then an output ramp for the detection of permanent negative control deviation begins. If the output ramp reaches a calibrated threshold then an output ramp for the detection of permanent negative control deviation begins. If the output ramp reaches a calibration threshold then a jammed valve is detected.

Actuator Jammed Valve Check Operation:	
DTCs	P02EC – Diesel Intake Air Flow Control High Air Flow Detected, P02ED – Diesel Intake Air Flow Control Low Air Flow Detected
Monitor execution	Continuous
Monitor Sequence	None
Monitoring Duration	10 seconds to register a malfunction

Typical Actuator Jammed Valve Entry Conditions:		
Entry Condition	Minimum	Maximum
Governor Active (closed-loop position control)		
Adaptive Learning Not Active		
Jammed Valve Fault Not Present on Actuator		
RPM	700 rpm	

Typical Throttle Jammed Valve Check (P02EC/P02ED) Malfunction Thresholds:

ThrVlv_rGovDvt > 29.8

ECB Valve Actuator Signal Range Check

ECB Actuator Open-Load Check Operation:	
DTCs	P2425 - Exhaust Gas Recirculation Cooling Valve Control Circuit Open Load
Monitor execution	At Start; when Power-stage is OFF.
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction

ECB Actuator Short-Circuit (P2426/P2427) Check Operation:	
DTCs	P2426- Exhaust Gas Recirculation Cooling Valve Control Circuit Low, P2427- Exhaust Gas Recirculation Cooling Valve Control Circuit High
Monitor execution	Continuous; when power stage ON
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction.

Urea System Pressure Control

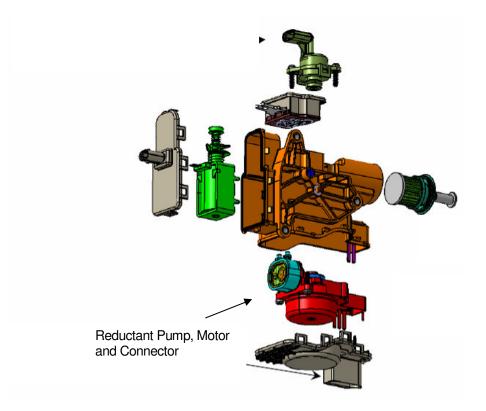
Urea pressure is maintained via:

• Feedback knowledge of sensed pressure.

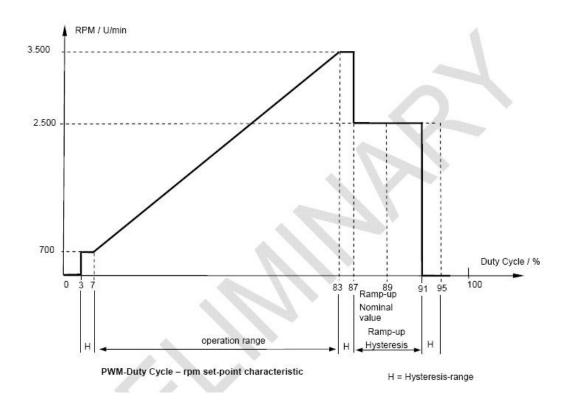
A set point pressure is determined by engine operating conditions (500 kPa over exhaust backpressure). If a pressure increase is desired, the urea pump motor speed is increased by increasing the PWM output. Pressure decreases are analogous; as the system has a backflow throttle, pressure will decrease to 0 unless the pump motor in run continuously.

Urea Pump Pressure Control (Normal) Functional Check Operation:		
DTCs	P20E8 (Reductant Pressure Too Low)	
	P20E9 (Reductant Pressure Too High)	
Monitor execution	continuous	
Monitor Sequence	P204C and P204D must complete before setting P20E8 or P20E9	
Sensors/Actuators OK	Urea pump pressure sensor, Urea pump motor, Urea injector	
Monitoring Duration	> 60 sec	

Typical Urea Pump Pressure Control (Normal) Functional Check Entry Conditions:		
Entry Condition	Minimum	Maximum
Reductant system pressurized and ready to inject		


Typical Urea Pump Pressure Control (Normal) Functional Check Malfunction Thresholds:

P20E8: < 350 kPa


P20E9: > 700 kPa

Reductant Pump Motor

The Reductant Pump is driven by a brushless DC electric 12 volt motor. The pump is a positive displacement diaphragm design connected to the motor by a connecting rod and an eccentric on the motor shaft.

Reductant Pump Motor speed is controlled by a PWM driver in the engine ECU. Increasing the duty cycle of the PWM increases the Pump Motor speed. PWM duty cycles between 87 and 95 are reserved for diagnostics.

Reductant Pump Motor Open/Short Check Operation:	
DTCs	P208A – Reductant Pump Control Circuit Open
	P208C – Reductant Pump Control Circuit Low
	P208D – Reductant Pump Control Circuit High
Monitor execution	Continuous – Open and Low with driver off / High with driver on
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	Circuit Open / Low: 8 seconds to register a malfunction
	Circuit High: 2 seconds to register a malfunction

Typical Reductant Motor Check Malfunction Thresholds:

No calibration thresholds available, fault information is sent directly from power stage.

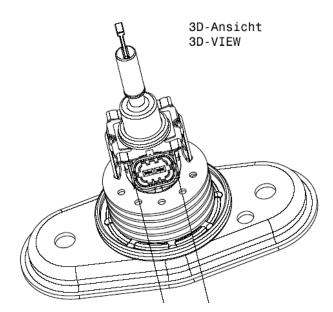
P208A - Reductant Pump Control Open Circuit > 5.80 volts

P208C - Reductant Pump Control Circuit Low < 3.50 volts

P208D - Reductant Pump Control Circuit High > 2.2 amps

Reductant Pump Motor Functional Check

The functional check monitors the Pump Motor Speed Deviation. This test is run if the commanded pump speed is within normal operating range, i.e. duty cycle 6.5 to 80 %. In this test if the internal RPM measurement of the Reductant Pump Motor speed is not matching the commanded speed within a certain percentage, a fault is detected and the system is shut down for this key cycle.


Reductant Pump Motor Control (Normal) Functional Check Operation:	
DTCs	P208B – Reductant Pump Control Range/Performance
Monitor execution	continuous
Monitor Sequence	P208A, P208C, P208D must complete
Sensors/Actuators OK	Reductant pump pressure sensor, Reductant injector
Monitoring Duration	5 sec for fault detection

Typical Reductant Pump Motor Control (Normal) Functional Check Malfunction Thresholds:

P208B: > 300 RPM error

Reductant Dosing Valve (Injector)

The reductant dosing valve is used to meter and atomize the reductant liquid before it is mixed with the exhaust gas. Normal operating frequency is between 3 Hz and .3 Hz. The cooling body contains heat sink fins to keep the injector and reductant below the boiling point. If the sensed temperature is nearing the maximum temperature threshold, reductant spray will be increased in quantity to actively cool the valve.

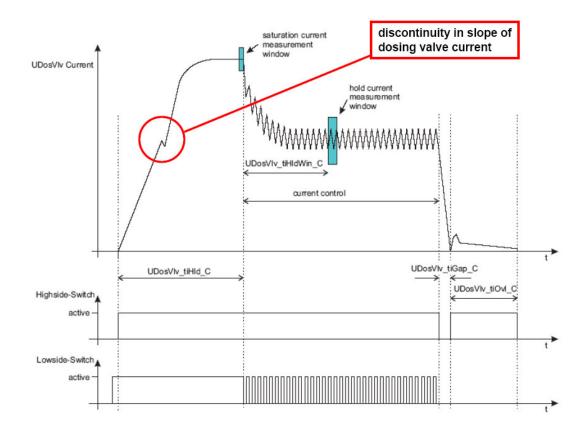
Reductant Dosing Valve Circuit Checks

Reductant Dosing Valve Circuit Check Operation:	
DTCs	P2047 – Reductant Injection Valve Circuit / Open (Bank 1 Unit 1)
	P2048 - Reductant Injection Valve Circuit Low (Bank 1 Unit 1)
	P2049 - Reductant Injection Valve Circuit High (Bank 1 Unit 1)
Monitor execution	Continuous
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	2 seconds to register a malfunction

Typical Reductant Dosing Valve Circuit Check Malfunction Thresholds:

No calibration thresholds available, fault information is sent directly from power stage

P2047 – Reductant Injection Valve Circuit / Open (Bank 1 Unit 1) - >5.80 volts

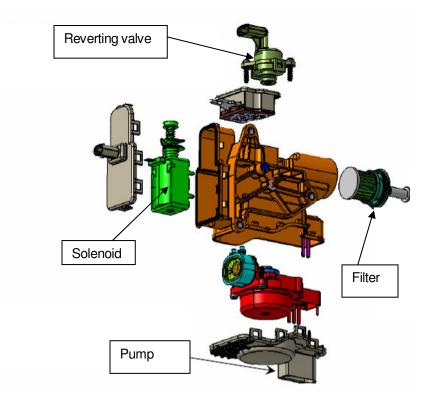

P2048 - Reductant Injection Valve Circuit Low (Bank 1 Unit 1) - < 3.2 volts HS, < 3.5 volts LS

P2049 - Reductant Injection Valve Circuit High (Bank 1 Unit 1) - > .4 volts HS, >2.2 amps LS

Reductant Dosing Valve Functional Check

The functional check monitors the movement of the injector needle. When the injector needle reaches its upper position (injector open, begin of injection period) a discontinuity in the slope of the dosing valve current occurs.

This functional check monitors the presence of this discontinuity. If it does not occur the injector is either stuck open or stuck closed. In both case the system cannot be operated and will be shut down.


Reductant Injection Functional Check Operation:	
DTCs	P208E - Reductant Injection Valve Stuck Closed (Bank 1 Unit 1)
Monitor execution	Once per injection stroke
Monitor Sequence	P208E is inhibited by active P2047, P2048 or P2049
Sensors/Actuators OK	Reductant pump motor, Reductant pressure sensor
Monitoring Duration	50 injection strokes for fault detection

Typical Reductant Injection Functional Check Malfunction Thresholds:

No calibration thresholds available, fault information is sent directly from power stage

Reverting Valve

In order to reverse the reductant flow direction (for line purge) a 4-2-way valve (reverting valve) needs to be switched. The valve is switched by a solenoid.

Reverting Valve Circuit Check Operation:	
DTCs	P20A0 – Reductant Purge Control Valve Circuit / Open
	P20A3 – Reductant Purge Control Valve Circuit High
	P20A2 – Reductant Purge Control Valve Circuit Low
Monitor execution	Continuous – Open and Low with driver off / High with driver on
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	2 seconds to register a malfunction

Typical Reverting Valve Circuit Check Malfunction Thresholds:

Fault is determined by power stage driver.

P20A0 - Reductant Purge Control Valve Circuit / Open - < 5.80 volts

P20A3 - Reductant Purge Control Valve Circuit High - > 2.20 amps

P20A2 – Reductant Purge Control Valve Circuit Low - < 3.50 volts

The reverting valve functional check monitors the pressure drop when the purge cycle is started. To run this test the pressure level must exceed a calibration threshold (280 kPa) at beginning of test. For a successful test result, the pressure must drop by another threshold (230 kPa) within the time.

If the test is not successfully passed the purge cycle will be terminated immediately because of the risk of uncontrolled injection of reductant into the exhaust pipe.

Reverting Valve Functional Check Operation:	
DTCs	P20A1 - Reductant Purge Control Valve Performance
Monitor execution	continuous
Monitor Sequence	P20A1 is inhibited by active P20A0 , P20A3 or P20A2
Sensors/Actuators OK	reductant pump pressure sensor, reductant injector, reductant pump motor
Monitoring Duration	5 sec for fault detection

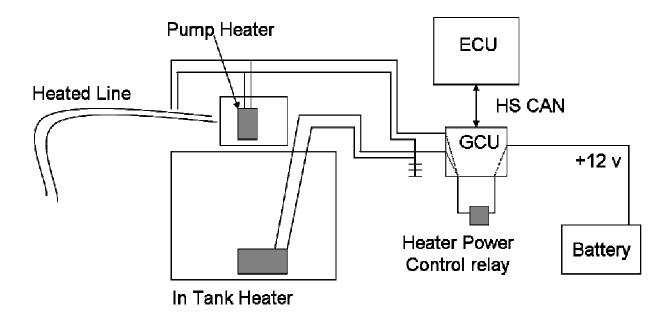
Typical Reverting Valve Functional Check Malfunction Thresholds:

P20A1: initial pressure > 280 kPa

Min. pressure drop < 230 kPa error

Urea Heaters

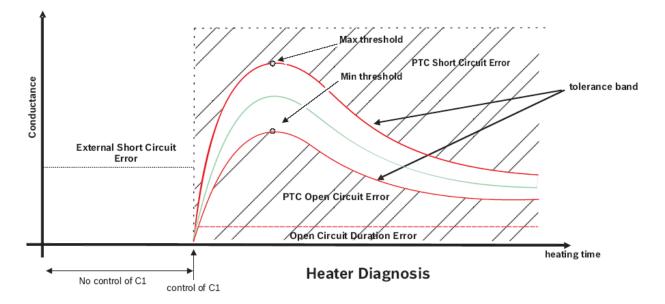
Aqueous urea water solution (Diesel Exhaust Fluid) freezes at -11 °C (12 deg. F). In order to keep the fluid liquid at low ambient temperatures, the system includes 3 heaters:


- tank heater (PTC heater element self regulating)
- pump heater (PTC heater element self regulating)
- pressure line heater (Resistance heater)

The heater power stages are located in the glow plug control module (GPCM). The tank heater is connected to heater power stage #1. The pressure line & pump heater are connected in parallel to heater power stage #2.

All SCR-heater related circuit checks are performed inside the GCU. The information is sent via CAN to the engine control module (ECM).

Additionally the GCU sends the supply voltage and the actual heater current for each circuit to the ECM.


Based on this information the heater plausibility checks are performed on the ECM.

Reductant Heater Plausibility Checks

Based on the information of heater voltage and heater current, the actual conductance at peak power is calculated for each heater circuit. This value is checked against the nominal value including tolerances.

Typical characteristic of PTC heater conductance:

Reductant Heater Plausibility Check Operation:	
DTCs	P20BA – Reductant Heater "A" Control Performance
	P20BE – Reductant Heater "B" Control Performance
Monitor execution	Once per drive cycle (at peak heater power)
Monitor Sequence	P20B9, P20BB, P20BC must complete for P20BA
	P20BD, P20BF, P20C0 must complete for P20BE
Sensors/Actuators OK	none
Monitoring Duration	1 event for fault detection

Typical Reductant Heater Plausibility Check Malfunction Thresholds:

P20BA: > nominal conductance of heater circuit #1 + max. tolerance or < nominal conductance of heater circuit #1 - max. tolerance
 P20BE: > nominal conductance of heater circuit #2 + max. tolerance or < nominal conductance of heater circuit #2 - max. tolerance

Additional plausibility check for heater circuit #2:

Pump heater & pressure line heater are connected in parallel to heater power stage #2. In order to be able to detect a failure of just one of both heaters, the conductance of heater circuit #2 is continuously checked against a minimum threshold. E.g. if the pressure line heater gets disconnected after peak conductance occurred, neither the plausibility check nor the circuit checks inside the GCU can detect this error. Therefore this continuous check becomes necessary.

Reductant Heater Plausibility Check Operation (Heater Circuit #2):	
DTCs	P20BE – Reductant Heater "B" Control Performance
Monitor execution	Continuously, if heater "B" is activated
Monitor Sequence	P20BD, P20BF, P20C0 must complete for P20BE
Sensors/Actuators OK	Pressure line heater
Monitoring Duration	2200 ms for fault detection

Typical Reductant Heater Plausibility Check Malfunction Thresholds (Heater Circuit #2):

P20BE: conductance of heater circuit $#2 < 0.3 \Omega^{-1}$

Reductant tank heater performance check (heater circuit #1):

The tank heater is located in close proximity to the tank temperature sensor. Therefore the tank temperature sensor can be used to monitor the tank heater performance.

When the tank heater is activated, the tank temperature is expected to rise. If this is not the case a fault will be set. If the vehicle is operated for several consecutive short drive cycles, the test may require more than one drive cycle to complete.

Reductant Heater Performance Check Operation (Heater Circuit #1):	
DTCs	P209F – Reductant Tank Heater Control Performance
Monitor execution	Once per heat cycle (after cold start)
Monitor Sequence	P20B9, P20BB, P20BC must complete for P209F
Sensors/Actuators OK	tank temperature sensor, tank heater
Monitoring Duration	2200 ms for fault detection

Typical Reductant Heater Performance Check Malfunction Thresholds (Heater Circuit #1):

P209F: temperature increase < 0.5℃

Engine Control Unit (ECU)	Ionitor Operation:
DTCs	P0600 - Serial Communication Link
	P0601 - Internal Control Module Memory Checksum Error
	P0606 - Control Module Processor
	P0607 - Control Module Performance
	P060A - Internal Control Module Monitoring Processor Performance
	P060B - Internal Control Module A/D Processing Performance
	P060D - Internal Control Module Accelerator Pedal Position Performance
	P0611 – Fuel Injector Control Module Performance
	P061A - Internal Control Module Torque Performance
	P061B - Internal Control Module Torque Calculation Performance
	P061C - Internal Control Module Engine RPM Performance
	P062B - Internal Control Module Fuel Injector Control Performance
	P062F - Internal Control Module EEPROM Error
	P06A6 - Sensor Reference Voltage "A" Circuit Range/Performance
	P06A7 - Sensor Reference Voltage "B" Circuit Range/Performance
	P06A8 - Sensor Reference Voltage "C" Circuit Range/Performance
	P167F - Non-OEM Calibration Detected
	P2506 - ECM / PCM Power Input Signal Range/Performance
	P2507 - ECM / PCM Power Input Signal Low
	P2508 - ECM / PCM Power Input Signal High
	P2610 – ECM / PCM Engine Off Timer Performance

Monitor Execution	P0600, P0606, P0607, P060A, P060B, P060D, P0611, P061A, P061B, P061C, P062B, P062F, P06A6, P06A7, P06A8, P167F, P2506, P2507, P2508, P2610, – Continuous P0601 – Postdrive
Monitor Sequence	None
Sensors OK	none
Typical Monitoring Duration	P0600, P0601, P0606, P0607, P060A, P060B, P060D, P061B, P061C, , P062B, P062F, P06A6, P06A7, P06A8, P167F, P2506, P2507, P2508, P0611 - 5 sec P061A - 0.1 sec , P2610 - 8 sec

Typical Engine Control Unit (ECU) Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
P0600, P0606, P0607, P060A, P060B, P060D, P061A, P061B, P061C, P062B, P062F, P06A6, P06A7, P06A8, P167F, P2506, P2507, P2508, P2610:		
ECU energized (key-on, engine running, or post- drive before ECU shutdown)		
P0601: Post-drive		
P0611: Engine running or cranking		

Typical Engine Control Unit (ECU) Monitor Malfunction Thresholds:

P0600 – – A data transfer between chips in the ECU either is not possible or has invalid check bytes

OR Communication is interrupted between the CPU and the monitoring module

P0601 - An error is detected in the post-drive ROM test

P0606 – A powerstage shutoff command is active OR A communications error exists between the powerstage controller chip and the CPU

P0607 – A software reset is detected by the ECU

P060A – An irreversible error occurs with an operating system function call OR An irreversible error occurs in the test of the monitoring module

P060B – Failure on power-up calibration done for the A/D conversion module and A/D conversion time performed on ECU start OR >249 mV reading in the cycle following grounding of a specific voltage OR Cyclical conversion of a predetermined voltage results in <4727 mV or >4830 mV reading.

P060D - If either pedal voltage 1 or pedal voltage 2 < 742 mV and (pedal voltage 1) - 2 * (pedal voltage 2) > 547 mV OR If pedal voltage 1 and pedal voltage 2 >= 742 mV and (pedal voltage 1) - 2 * (pedal voltage 2) > 1055 mV

P0611 – If the raw voltage detected by an internal ECU voltage measurement for fuel system Nominal Voltage Calibration falls below 0 mV or above 3300 mV for the monitoring duration

P061A – Commanded inner torque > permissible inner torque at current engine operating condition

P061B – The energizing time for Zero Fuel Calibration is <10 ms or > 850 ms (beyond limits for P02CC-P02DA) OR The difference between programmed energizing time and actual energizing time exceeds 127.2 us or The requested time for start of energizing of a given fuel injection is outside the crank angle regime permitted for that injection

OR The correction in requested fuel injection quantity due to transient pressure effects within the fuel injector as calculated by the control software and as calculated by the monitor exceeds 5 mg for an injection

P061C – The engine speed calculated by the control software and the engine speed calculated by the monitor deviate by more than 400 RPM

P062B – If an error is detected in a requested post injection OR If requested energizing time exceeds 200 us when the controller is operating in overrun/decel fuel shut-off mode

P062F – An error is detected in an EEPROM read, write, or erase operation

P06A6 – Voltage output of sensor supply 1 is <4.7 V or >5.3 V

P06A7 – Voltage output of sensor supply 2 is <4.7 V or >5.3 V

P06A8 – Voltage output of sensor supply 3 <4.7 V or >5.3 V

P167F – a non-OEM calibration has been detected

P2506 – If an unexpected loss of power that resets the main ECU relay occurs OR If the main ECU relay is active for more than 150 ms and battery voltage > 9V

P2507 – The 5V internal ECU supply is <4.2 V

P2508 – The 5V internal ECU supply is > 5.5 V

P2610 – If, during a key off event, engine coolant temperature decreases by 30 degrees and the engine off timer has not incremented at least 1200 seconds OR If, while running for 1200 seconds as measured by ECU timer, the timer used for engine off time and the time as determined by the secondary timer differ by at least 100 seconds OR In afterrun, if a requested 8 second stop timer measurement is <7.52 seconds or >8.48 seconds

Idle Speed and Fuel Monitor	Operation:	
DTCs	P0506 - Idle Control System - RPM Lower Than Expected	
	P0507 - Idle Control System - RPM Higher Than Expected	
	P054E - Idle Control System - Fuel Quantity Lower Than Expected	
	P054F - Idle Control System - Fuel Quantity Higher Than Expected	
Monitor Execution	P0506, P0507, P054E, P054F - Continuous	
Monitor Sequence	None	
Sensors OK	P0506 - Engine Coolant Temperature (P0116, P0117, P0118, P0128, Crankshaft Sensor (P0335, P0336),	
	P0507 - Engine Coolant Temperature (P0116, P0117, P0118, P0128, Crankshaft Sensor (P0335, P0336),	
	P054E - Engine Coolant Temperature (P0116, P0117, P0118, P0128, Crankshaft Sensor (P0335, P0336),	
	P054F - Engine Coolant Temperature (P0116, P0117, P0118, P0128, , Crankshaft Sensor (P0335, P0336),	
Typical Monitoring Duration	P0506 – 5 sec	
	P0507 – 5 sec	
	P054E – 5 sec	
	P054F – 5 sec	

Typical Idle Speed and Fuel Monitor Entry Conditions:		
Entry condition	Minimum	Maximum
P0506, P0507:		
Engine idle speed governor active (define this more completely)		
Engine Coolant Temperature ($^{\circ}$ C)	0	120
Vehicle Speed (kph)		1
Engine RPM	300 (stall speed)	1500 (300 rpm above max requestable idle speed)
P054E, P054F:		
Engine running		

Typical Idle Speed and Fuel Monitor Malfunction Thresholds:

P0506 – If observed idle speed is 100 or more RPM below requested idle speed

P0507 - If observed idle speed is 160 or more RPM above requested idle speed

P054E – If calculated torque required for idle is 30+% below the minimum threshold of (insert threshold)

P054F – If calculated torque required for idle is 30+% above the maximum of threshold of (insert threshold)

Lack of Communication Codes:

CAN Communications Error

The TCM receives information from the ECM via the high speed CAN network. If the CAN link or network fails, the TCM no longer has torque or engine speed information available. The TCM will store a U0073 fault code and will illuminate the MIL immediately (missing engine speed) if the CAN Bus is off. The TCM will store a U0100 fault code and will illuminate the MIL immediately (missing engine speed) if it stops receiving CAN messages from the ECM.

ECU CAN Communication Malfunctions	
DTCs	U0073 - Control Module Communication Bus "A" Off
	U0074 - Control Module Communication Bus "B" Off
	U0101 - Lost Communication with TCM
	U0102 - Lost Communication with Transfer Case Control Module
	U0121 - Lost Communication With Anti-Lock Brake System (ABS) Control Module
	U0140 - Lost Communication With Body Control Module
	U0151 - Lost Communication With Restraints Control Module
	U0212 - Lost Communication With Steering Column Control Module
Monitor execution	continuous
Monitor Sequence	None
Sensors OK	not applicable
Monitoring Duration	continuous

Typical Malfunction Thresholds

U0073 CAN Chip Driver detect CAN line short or open > 10 ms

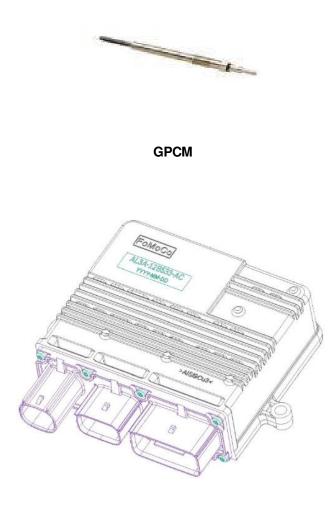
U0074 CAN Chip Driver detect CAN line short or open > 10 ms

U0101 TCM master message not received for 1 sec

- U0102 TCCM master message not received for 5 sec
- U0121 ABS master message not received for 5 sec
- U0140 BCM master message not received for 10 sec
- U0151 RCM master message not received for 10 sec
- U0212 SCCM master message not received for 5 sec

Vehicle speed is received by the ECU over CAN. When engine speed and torque are above calibrated thresholds (which infer vehicle motion) and vehicle speed over CAN is less than a threshold, the fault is set.

VS Communication Plausibility Malfunctions	
DTCs	P1934 Vehicle Speed Signal
Monitor execution	continuous
Monitor Sequence	None
Sensors OK	not applicable
Monitoring Duration	continuous


Typical Malfunction Thresholds

P1934 VS < 15 kph for > 10 seconds

Glow Plugs

The diesel engine uses glow plugs to assist with cold weather starting and combustion until the cylinder is warm enough to operate normally. The glow plugs are duty cycle controlled and will overheat if constant 12V is applied.

The glow plugs are operated by the Glow Plug Control Module (GPCM). It contains 8 high current smart MOSFET drivers, one for each glow plug. Glow time and intensity are calculated on the basis of CAN signals (rpm, torque, engine coolant temp, air temp and BP.) The module also contains 3 drivers for the DEF (NOx reductant) heating and thaving system.

The GPCM is connected to the ECU via Diesel high speed CAN. All data and diagnostics pass over this nonpublic communication bus. The standard operating voltages for the GPCM are 6.5 volts to 16 volts. Limited operation between 5.5v and 6.5v on the lower range and no operation below 5.5v. Glow function is disabled below 6.5v and above 16.5v.

Glow Plug Module Operational Checks:	
DTCs	U0106 – Lost Communication with GPCM
	P0381 – Glow Plug/Heater Indicator Circuit
	P064C – Glow Plug Control Module
	P06DF – Glow Plug Module Memory Checksum Error
	P138B – Glow Plug Module System Voltage
	P20C2 – Reductant Heater "C" Control Performance
Monitor execution	P06DF, P0381 at power up, otherwise continuous
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	~1 second to register a malfunction

Glow Plug Module: Malfunction Thresholds:

Communication lost for > 5 seconds

Cluster detects wait to start lamp in wrong state (off when commanded on)

Any internal driver circuits detect fault (not switching or over temp) > 1 sec (glow plugs, urea heaters or relay)

RAM checksums do not match expected

GPCM main power feed voltage too low / too high / open circuit (< 6.5 volts or > 16 volts)

Low voltage detected on the Reductant Heater Circuit "C" < 5 volts

Glow Plug Circuit Open	Load Check Operation:
DTCs	P0671 – Cylinder 1 Glow Plug Circuit / Open
	P0672 – Cylinder 2 Glow Plug Circuit / Open
	P0673 – Cylinder 3 Glow Plug Circuit / Open
	P0674 – Cylinder 4 Glow Plug Circuit / Open
	P0675 – Cylinder 5 Glow Plug Circuit / Open
	P0676 – Cylinder 6 Glow Plug Circuit / Open
	P0677 – Cylinder 7 Glow Plug Circuit / Open
	P0678 – Cylinder 8 Glow Plug Circuit / Open
	P20B9 – Reductant Heater "A" Control Circuit / Open
	P20BD – Reductant Heater "B" Control Circuit / Open
	P20C1 - Reductant Heater "C" Control Circuit / Open
Monitor execution	Glow plugs in heating mode. Heaters operational
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	~1 second to register a malfunction

Glow Plug Circuit Open Load: Malfunction Thresholds:

Individual glow plug circuit current < 1 A, Individual reductant heater circuit current < .2 A

Glow Plug Circuit Short to	Battery Check Operation:
DTCs	P066B – Cylinder 1 Glow Plug Circuit High
	P066D – Cylinder 2 Glow Plug Circuit High
	P066F – Cylinder 3 Glow Plug Circuit High
	P067B – Cylinder 4 Glow Plug Circuit High
	P067D – Cylinder 5 Glow Plug Circuit High
	P067F – Cylinder 6 Glow Plug Circuit High
	P068D – Cylinder 7 Glow Plug Circuit High
	P068F – Cylinder 8 Glow Plug Circuit High
	P20BC – Reductant Heater "A" Control Circuit High
	P20C0 – Reductant Heater "B" Control Circuit High
	P20C4 – Reductant Heater "C" Control Circuit High
Monitor execution	Glow plugs in heating mode. Heaters operational
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	~1 second to register a malfunction for glow plugs
	250 ms to register a malfunction for the reductant heaters

Glow Plug Circuit Short to Battery: Malfunction Thresholds:

Individual glow plug circuit = 0 Amps current, Individual reductant heater circuit = 0 Amps current

Glow Plug Circuit Short to	Ground Check Operation:
DTCs	P066A – Cylinder 1 Glow Plug Circuit Low
	P066C – Cylinder 2 Glow Plug Circuit Low
	P066E – Cylinder 3 Glow Plug Circuit Low
	P067A – Cylinder 4 Glow Plug Circuit Low
	P067C – Cylinder 5 Glow Plug Circuit Low
	P067E – Cylinder 6 Glow Plug Circuit Low
	P068C – Cylinder 7 Glow Plug Circuit Low
	P068E – Cylinder 8 Glow Plug Circuit Low
	P20BB – Reductant Heater "A" Control Circuit Low
	P20BF – Reductant Heater "B" Control Circuit Low
	P20C3 – Reductant Heater "C" Control Circuit Low
Monitor execution	Glow plugs in heating mode. Heaters operational.
Monitor Sequence	none
Sensors OK	none
Monitoring Duration	~3 second to register a malfunction for glow plugs
	250 ms to register a malfunction for the reductant heaters

Glow Plug Circuit Short to Battery: Malfunction Thresholds:

Individual glow plug circuit > 20 Amps current > 1 second

Individual glow plug circuit > 70 Amps current for > .2 ms

Reductant heater relay (circuit "A" & "B") > 15 Amps current > 250 ms

Reductant heater relay (circuit "C") > 6 Amps current > 250 ms

Glow Plug Circuit Resistar	nce Out of Range Check:
DTCs	P06B9 – Cylinder 1 Glow Plug Circuit Range / Performance
	P06BA – Cylinder 2 Glow Plug Circuit Range / Performance
	P06BB – Cylinder 3 Glow Plug Circuit Range / Performance
	P06BC – Cylinder 4 Glow Plug Circuit Range / Performance
	P06BD – Cylinder 5 Glow Plug Circuit Range / Performance
	P06BE – Cylinder 6 Glow Plug Circuit Range / Performance
	P06BF – Cylinder 7 Glow Plug Circuit Range / Performance
	P06C0 – Cylinder 8 Glow Plug Circuit Range / Performance
Monitor execution	Glow plugs in heating mode.
Monitor Sequence	After Open circuit, short to battery and short to ground testing
Sensors OK	none
Monitoring Duration	~3 second to register a malfunction

Glow Plug Circuit Short to Battery: Malfunction Thresholds:

Individual circuit > 2 ohms resistance

Turbocharger Actuator Signal Range Check

The diagnostics for the circuit range check on the pwm signal to the turbocharger VGT actuator are internal to the PWM power-stage. Open load, short-circuit to ground, and short-circuit to battery are detected on the single control line to the actuator.

Turbocharger Control Circuit Open Load/Short to Ground/Short to Power:		
DTCs	P132A - Turbocharger/Supercharger Boost Control "A" Electrical	
Monitor execution	Continuous	
Monitor Sequence	None	
Monitoring Duration	2 seconds to register a malfunction	

Wastegate Vacuum Solenoid Signal Range Check

The 6.7L chassis cert engine is equipped with a vacuum actuated wastegate. Vacuum is supplied at all times to the wastegate vacuum regulating valve, which is controlled via PWM signal. When a PWM signal is applied to the vacuum regulating valve, the valve opens and vacuum is applied to the wastegate, and the wastegate opens. There is an intrusive monitor to verify wastegate movement, and in addition there are open load/short circuit to ground/battery diagnostics on the vacuum regulating valve.

The diagnostics for the circuit range check on the pwm signal to the wastegate vacuum control solenoid are internal to the PWM power-stage. Open load, short-circuit to ground, and short-circuit to battery are detected on the single control line to the solenoid.

Wastegate Open Load Operation:	
DTCs	P0243 - Turbocharger/Supercharger Wastegate Solenoid "A"
Monitor execution	Continuous
Monitor Sequence	None
Monitoring Duration	2 seconds to register a malfunction

Wastegate Short Circuit Check Operation:			
DTCs	P0245 – Turbocharger/Supercharger Wastegate Solenoid "A" Low		
	P0246 – Turbocharger/Supercharger Wastegate Solenoid "A" High		
Monitor execution	Continuous		
Monitor Sequence	None		
Monitoring Duration	2 seconds to register a malfunction.		

Miscellaneous ECU Errors:

VID Block Configuration Errors

The following fault codes are immediate malfunction lamp codes (1 drive cycle) and reflect that the Vehicle Identification Block has been improperly configured.

VID Block Configuration	
DTCs	P0602 - Internal Control Module Keep Alive Memory (KAM) Error
	P0610 - Control Module Vehicle Options Error
	P1635 - Tire/Axle Out of Acceptable Range
	P1639 - Vehicle ID Block Corrupted, Not Programmed

Comprehensive Component Monitor - Transmission

General

The MIL is illuminated for all emissions related electrical component malfunctions. For malfunctions attributable to a mechanical component (such as a clutch, gear, band, valve, etc.), some transmissions are capable of not commanding the mechanically failed component and providing the remaining maximum functionality (functionality is reassessed on each power up)- in such case a non-MIL Diagnostic Trouble Code (DTC) will be stored and the Wrench" Light will flash.

Transmission Inputs

Transmission Range Sensor Check Operation:			
DTCs	P0706 - Out of range signal frequency for PWM TRS		
	P0707, P0708 - Low /High duty cycle for PWM TRS		
Monitor execution	Continuous		
Monitor Sequence	None		
Sensors OK			
Monitoring Duration	5 seconds		

Typical TRS check entry conditions:		
Auto Transmission Entry Conditions	Minimum	Maximum
Gear selector position		

Typical TRS malfunction thresholds:

PWM TRS: Frequency > 175 Hz or < 75 Hz, Duty Cycle > 96.9% or < 7.4%

Most vehicle applications no longer have a standalone vehicle speed sensor input. The PCM sometimes obtains vehicle speed information from another module on the vehicle, i.e. ABS module. In most cases, however, vehicle speed is calculated in the PCM by using the transmission output shaft speed sensor signal and applying a conversion factor for axle ratio and tire programmed into the Vehicle ID block. A Vehicle Speed Output pin on the PCM provides the rest of the vehicle with the standard 8,000 pulses/mile signal.

Note: If the Vehicle ID block has not been programmed or has been programmed with an out-of-range (uncertified) tire/axle ratio, a P1639 DTC will be stored and the MIL will be illuminated immediately.

Output Shaft Speed Sensor Functional Check Operation:			
DTCs	P0720 – OSS circuit		
Monitor execution	Continuous		
Monitor Sequence	None		
Sensors OK	TSS, Wheel Speed		
Monitoring Duration	4.2 seconds		

Typical OSS functional check entry conditions:		
Auto Transmission Entry Conditions	Minimum	Maximum
Gear selector position	Forward range	
Engine torque	68 ft-lbs	
Engine rpm (above converter stall speed) OR	3000 rpm	
Turbine shaft rpm (if available) OR	1033 rpm	
Vehicle speed	10 mph	

Typical OSS functional check malfunction thresholds:

OSS < 200 rpm

Turbine Shaft Speed Sensor Functional Check Operation:		
DTCs	P0715 – TSS circuit	
Monitor execution	Continuous	
Monitor Sequence	None	
Sensors OK	OSS, Wheel Speed	
Monitoring Duration	4.2 seconds	

Typical TSS functional check entry conditions:		
Auto Transmission Entry Conditions	Minimum	Maximum
Gear selector position	Forward range	
Engine torque	68 ft-lbs	
Engine rpm (above converter stall speed) OR	3000 rpm	
Output shaft rpm OR	386 rpm	
Vehicle speed	14.8 mph	

Typical TSS functional check malfunction thresholds:

TSS < 200 rpm

Transmission Fluid Temperature Sensor Functional Check Operation:		
DTCs (non-MIL)	P0712, P0713 - Opens/shorts	
	P1783 - Overtemperature	
	P0711 - Stuck low/high	
Monitor execution	continuous	
Monitor Sequence	none	
Sensors OK	ECT substituted if TFT has malfunction	
	TFT inferred from pressure solenoids on CFT30	
Monitoring Duration	2.5 seconds for electrical, 600 seconds for functional check	

Typical TFT Stuck Low/High check entry conditions:		
Auto Transmission Entry Conditions	Minimum	Maximum
Engine Coolant Temp (hot or cold, not midrange)	> 100 °F	< 20 °F
Time in run mode	500 – 600 sec	
Time in gear, vehicle moving, positive torque	150 sec	
Vehicle Speed	15 mph	
Time with engine off (cold start) OR	420 min	
Engine Coolant Temp AND Trans Fluid Temp (inferred cold start)		122 °F

Typical TFT malfunction thresholds:

Opens/shorts: TFT voltage <0.05 or > 4.6 volts for 2.5 seconds

Overtemperature: Indicated TFT > 275 deg F

TFT Stuck low/high, i.e. TFT stuck at high temperature or stuck at low temperature):

Stores a fault code if TFT stabilizes (stops increasing if temperature < 70 deg F, stops decreasing if temperature > 225 deg F) before reaching the temperature region where all MIL tests are enabled (70 to 225 deg F). If TFT remains constant (+/- 2 deg F) for approximately 2.5 minutes of vehicle driving outside the 70 to 225 deg F zone a P0711 fault code will be stored.

Transmission Outputs

Shift Solenoid Check Operation:		
DTCs	SS A -	P0750 open
		P0973 short to ground
		P0974 short to power
	SS B -	P0755 open
		P0976 short to ground
		P0977 short to power
	SS C -	P0760 open
		P0976 to ground
		P0977 short to power
	SS D	P0765 open
		P0982 to ground
		P0983 short to power
	SS E	P0770 open
		P0985 to ground
		P0986 short to power
Monitor execution	continu	ous
Monitor Sequence	None	
Sensors OK		
Monitoring Duration	5 secor	nds
	1	

Typical Shift Solenoid check entry conditions:			
Entry Conditions	Minimum	Maximum	
Battery voltage	10 V	18 V	

Typical Shift Solenoid malfunction thresholds:

Electrical circuit check: Output driver feedback circuit does not match commanded driver state for 5.0 seconds

Shift Solenoid Functional Check Operation	:
DTCs	P0751 – SSA stuck off
	P0752 – SSA stuck on
	P0756 – SSB stuck off
	P0757 – SSB stuck on
	P0761 – SSC stuck off
	P0762 – SSC stuck on
	P0766 – SSD stuck off
	P0767 – SSD stuck on
	P0771 – SSE stuck off
	P0772 – SSE stuck on
Monitor execution	Continuous, in each gear
Monitor Sequence	None
Sensors OK	TSS, OSS, wheel speed
Monitoring Duration	1 second

Typical Shift Solenoid functional check entry conc	litions:	
Entry Conditions	Minimum	Maximum
Gear selector position	forward range	
Turbine speed	350 rpm	
Output speed	150 rpm	
Engine torque OR	> 68 ft-lbs	
Turbine speed > engine speed	25 rpm	

Typical Shift Solenoid functional malfunction thresholds:

Specific failed clutch or band (solenoid and stuck on or stuck off) determined by matrix of gear ratio errors encountered during shift sequence

Torque Converter Clutch Check Operation:	
DTCs	P0740 - open
	P0742 – short to ground
	P0744 – short to power
	P0741 - mechanical functional, stuck off
Monitor execution	electrical - continuous,
	mechanical - during lockup
Monitor Sequence	None
Sensors OK	TSS, OSS
Monitoring Duration	Electrical – 5 seconds, Functional - 3 3-second lock-up events

Typical TCC functional check entry conditions:		
Entry Conditions	Minimum	Maximum
Battery voltage	10 V	18 V
Transmission range	forward gear	
No gear shift in progress		
Transmission Fluid Temp		275 °F
Engine Torque	positive drive torque	
Commanded TCC duty cycle for 0 rpm slip	60%	90%

Typical TCC malfunction thresholds:

Electrical circuit check: Output driver feedback circuit does not match commanded driver state for 5.0 seconds

Mechanical check, stuck off: Slip across torque converter > 100 rpm

Pressure Control Solenoid Check Operation:		
DTCs	P0960, P0962, P0963 - PC A opens/shorts	
Monitor execution	Continuous	
Monitor Sequence	none	
Sensors OK		
Monitoring Duration	Electrical: 5 seconds,	

Typical Pressure Control Solenoid check entry conditions:			
Entry Conditions	Minimum	Maximum	
Battery voltage	10 V	18 V	

Typical Pressure Control Solenoid malfunction thresholds:

Electrical circuit check: Output driver feedback circuit does not match commanded driver state for 0.5 - 5.0 seconds

6R140 (RWD) Transmission with external PCM or TCM

Transmission Control System Architecture

Starting in 2011 MY, the 6R140 replaces 5R110W in Super Duty truck applications.

The 6R140 is a 6-speed, step ratio transmission that is controlled by an external PCM (gas engine applications) or TCM (Diesel engine applications). For Diesel the TCM communicates to the Engine Control Module (ECM), ABS Module, Instrument Cluster and Transfer Case Control Module using the high speed CAN communication link. The TCM incorporates a standalone OBD-II system. The TCM independently processes and stores fault codes, freeze frame, supports industry-standard PIDs as well as J1979 Mode 09 CALID and CVN. The TCM does not directly illuminate the MIL, but requests the ECM to do so. The TCM is located outside the transmission assembly. It is not serviceable with the exception of reprogramming.

Transmission Inputs

Transmission Range Sensor

6R140 uses a Non-contacting Pulse Width Modulated Transmission Range Sensor (TRS) that provides a duty cycle signal for each position. This signal is transmitted at a frequency of 125 Hz. The PCM / TCM decode the duty cycle to determine the driver-selected gear position (Park, Rev, Neutral, OD, 3, 2, 1). This input device is checked for frequency out of range (P0706), duty cycle out of range low (P0707) and duty cycle out of range high (P0708)

Speed Sensors

The Turbine Shaft Speed (TSS) sensor and Output Shaft Speed (OSS) sensor are Hall effect sensors.

The Turbine Shaft Speed sensor is monitored by a rationality test, if engine speed and output shaft speed are high and a gear is engaged, it can be inferred that the vehicle is moving. If there is insufficient output from the TSS sensor a fault is stored (P0715).

The Output Shaft Speed sensor is monitored by a rationality test. If engine speed and turbine speed are high and a gear is engaged, it can be inferred that the vehicle is moving. If there is insufficient output from the OSS sensor a fault is stored (P0720).

Transmission Fluid Temperature

The Transmission Fluid Temperature Sensor is checked for out of range low (P0712), out of range high (P0713), and in-range failures (P0711).

Transmission Outputs

Shift Solenoids

6R140 has 5 shift solenoids:

- 1. SSA a Variable Force Solenoid (VFS) that controls CB1234 (a brake clutch, grounds an element to the case, that is on in 1st, 2nd, 3rd and 4th gear)
- 2. SSB a VFS that controls C35R (a rotating clutch on in 3rd, 5th and Reverse)
- 3. SSC a VFS that controls CB26 (a brake clutch on in 2^{nd} and 6^{th} gear)
- 4. SSD a VFS that controls CBLR (a brake clutch on in 1st gear with engine braking and Reverse)
- 5. SSE a VFS that controls C456 (a rotating clutch on in 4^{th} , 5^{th} and 6^{th} gear)

Output circuits are checked for opens, short to ground and short to power faults (codes listed in that order) by the "smart driver" (see ADLER below) that controls the solenoids (SSA P0750, P0973, P0974; SSB P0755, P0976, P0977; SSC P0760, P0979, P0980; SSD P0765, P0982, P0983; SSE P0770, P0985, P0986).

The shift solenoids are also functional tested for stuck on and stuck off failures. This is determined by vehicle inputs such as gear command, and achieved gear (based on turbine and output speed). In general the shift solenoid malfunction codes actually cover the entire clutch system (solenoid, valves, seals and the clutch itself since using ratio there is no way to isolate the solenoid from the rest of the clutch system)

For SSA thru SSE Diagnostics will isolate the fault into clutch functionally (non-electrical) failed off (SSA P0751, SSB P0756, SSC P0761, SSD P0766. SSE P0771) and clutch functionally failed on (SSA: P0752, SSB: P0757, SSC: P0762, SSD: P0767, SSE: P0772).

Torque Converter Clutch

The Torque Converter Clutch (TCC) solenoid is a Variable Force Solenoid. TCC solenoid circuit is checked electrically for open, short to ground and short to power circuit faults internally by the "smart driver" that controls the solenoids (P0740, P0742, P0744).

The TCC solenoid is checked functionally for stuck off faults by evaluating torque converter slip under steady state conditions when the torque converter is fully applied. If the slip exceeds the malfunction thresholds when the TCC is commanded on, a TCC malfunction is indicated (P0741).

The TCC solenoid is monitored functionally for stuck on faults (P2758) by monitoring for lack of clutch slip when the TCC is commanded off, but this code is non-MIL because while a stuck on TCC solenoid may cause driveability complaints and/or cause engine stalls it does not impact emissions or fuel economy.

Electronic Pressure Control

The EPC solenoid is a variable force solenoid that controls line pressure in the transmission. The EPC solenoid is monitored for open, short to ground or short to power faults by the "smart driver" that controls the solenoid. If a short to ground (low pressure) is detected, a high side switch will be opened. This switch removes power from all 7 VFSs, providing Park, Reverse, Neutral, and 5M (in all forward ranges) with maximum line pressure based on manual lever position. This solenoid is tested for open (P0960), short to ground (P0962), and short to power (P0963) malfunctions.

Transmission Solenoid Power Control (TSPC)

6F140 PCM or TCM has a internal high side switch called TSPC that can be used to remove power from all 7 solenoids simultaneously. If the high side switch is opened, all 7 solenoids will be electrically off, providing Park, Reverse, Neutral, and 5M (in all forward ranges) with maximum line pressure based on manual lever position.

Due to current limitations TSPC is split into 2 pins / wires at the PCM / TCM. TSPC A provides power to SSA, SSC and SSE. TSPC B provides power to SSB, SSD, TCC and LPC. Each wire can be tested independently; P0657 sets for an issue with TSPC-A, P2669 sets for an issue with TPSC-B.

Although there are 2 pins and wires between the PCM / TCM and the transmission bulkhead connector the PCM / TCM contains only one TSPC internally – so the FMEM for either wire being failed is to open TSCP inside the PCM / TCM, which removes power from all 7 solenoids, providing P, R, N and 5th gear with open TCC and max line as FMEM for any TPSC faults.

ADLER (chip that controls all 7 solenoids) diagnostics:

The solenoids are controlled by an ADLER chip. The main micro sends commanded solenoid states to the ADLER, and receives back solenoid circuit fault information.

If communication with the ADLER is lost a P1636 fault code will be stored. If this failure is detected the states of the solenoids are unknown, so the control system will open the high side switch (removes power from all the solenoids), providing P, R, N and 5M with open TCC and max line pressure.

TRID Block

The TRID block is a portion of flash memory that contains solenoid characterization data tailored to the specific transmission to improve pressure accuracy.

The TRID block is monitored for two failures:

- TRID block checksum error / incorrect version of the TRID (P163E)
- TRID block not programmed (P163F)

If the TRID block is unavailable FMEM action limits operation to 1st and 3rd gear until the issue is correct.

Transmission Control Module (TCM – Diesel only)

The TCM has the same module diagnostics as a PCM – see miscellaneous CPU tests.

CAN Communications Error

The TCM receives information from the ECM via the high speed CAN network. If the CAN link or network fails, the TCM no longer has torque or engine speed information available. The TCM will store a U0073 fault code and will illuminate the MIL immediately (missing engine speed) if the CAN Bus is off. The TCM will store a U0100 fault code and will illuminate the MIL immediately (missing engine speed) if it stops receiving CAN messages from the ECM. A U0401 fault codes will be stored if the ECM sends invalid/faulted information for the following CAN message items: engine torque, pedal position.

TCM voltage

If the system voltage at the TCM is outside of the specified 9 to 16 volt range, a fault will be stored (P0882, P0883).

On Board Diagnostic Executive

The On-Board Diagnostic (OBD) Executive is a portion of the PCM strategy that manages the diagnostic trouble codes and operating modes for all diagnostic tests. It is the "traffic cop" of the diagnostic system. The Diagnostic Executive performs the following functions:

- Stores freeze frame and "similar condition" data.
- Manages storage and erasure of Diagnostic Trouble Codes as well as MIL illumination.
- Controls and co-ordinates the execution of the On-Demand tests: Key On Engine Off (KOEO) and Key On Engine Running (KOER).
- Performs transitions between various states of the diagnostic and powertrain control system to minimize the effects on vehicle operation.
- Interfaces with the diagnostic test tools to provide diagnostic information (I/M readiness, various J1979 test modes) and responses to special diagnostic requests (J1979 Mode 08 and 09).
- Tracks and manages indication of the driving cycle which includes the time between two key on events that include an engine start and key off.

The diagnostic executive also controls several overall, global OBD entry conditions.

- The battery voltage must fall between 9.0 and 15.9 volts to initiate monitoring cycles.
- The engine must be started to initiate the engine started, engine running, and engine off monitoring cycles.
- The Diagnostic Executive suspends OBD monitoring when battery voltage falls below 11.0 volts.

The diagnostic executive controls the setting and clearing of pending and confirmed DTCs.

- A pending DTC and freeze frame data is stored after a fault is confirmed on the first monitoring cycle. If the fault recurs on the next driving cycle, a confirmed DTC is stored, freeze frame data is updated, and the MIL is illuminated. If confirmed fault free on the next driving cycle, the pending DTC and freeze frame data is erased on the next power-up.
- Pending DTCs will be displayed as long as the fault is present. Note that OBD-II regulations required a complete fault-free monitoring cycle to occur before erasing a pending DTC. In practice, this means that a pending DTC is erased on the next power-up after a fault-free monitoring cycle.
- After a confirmed DTC is stored and the MIL has been illuminated, three consecutive confirmed fault-free monitoring cycles must occur before the MIL can be extinguished on the next (fourth) power-up. After 40 engine warm-ups, the DTC and freeze frame data is erased.

The diagnostic executive controls the setting and clearing of permanent DTCs.

- A permanent DTC is stored when a confirmed DTC is stored, the MIL has been illuminated, and there are not yet six permanent DTCs stored.
- After a permanent DTC is stored, three consecutive confirmed fault-free monitoring cycles must occur before the permanent DTC can be erased.
- After a permanent DTC is stored, one confirmed fault-free monitoring cycle must occur, following a DTC reset request, before the permanent DTC can be erased. For 2010MY and beyond ISO 14229 programs a driving cycle including the following criteria must also occur, following the DTC reset request, before a permanent DTC can be erased:
 - o Cumulative time since engine start is greater than or equal to 600 seconds;
 - Cumulative vehicle operation at or above 25 miles per hour occurs for greater than or equal to 300 seconds (medium-duty vehicles with diesel engines certified on an engine dynamometer may use cumulative operation at or above 15% calculated load in lieu of at or above 25 miles per hour for purposes of this criteria); and
 - Continuous vehicle operation at idle (i.e., accelerator pedal released by driver and vehicle speed less than or equal to one mile per hour) for greater than or equal to 30 seconds.
- A permanent DTC can not be erased by a KAM clear (battery disconnect). Additionally, its confirmed DTC counterpart will be restored after completion of the KAM reset (battery reconnect).

Exponentially Weighted Moving Average

Exponentially Weighted Moving Averaging is a well-documented statistical data processing technique that is used to reduce the variability on an incoming stream of data. Use of EWMA does not affect the mean of the data; however, it does affect the distribution of the data. Use of EWMA serves to "filter out" data points that exhibit excessive and unusual variability and could otherwise erroneously light the MIL.

The simplified mathematical equation for EWMA implemented in software is as follows:

New Average = [New data point * "filter constant"] + [(1 - "filter constant") * Old Average]

This equation produces an exponential response to a step-change in the input data. The "Filter Constant" determines the time constant of the response. A large filter constant (i.e. 0.90) means that 90% of the new data point is averaged in with 10% of the old average. This produces a very fast response to a step change. Conversely, a small filter constant (i.e. 0.10) means that only 10% of the new data point is averaged in with 90% of the old average. This produces a step change. This produces a step change in with 90% of the old average. This produces a step change in with 90% of the old average. This produces a step change.

When EWMA is applied to a monitor, the new data point is the result from the latest monitor evaluation. A new average is calculated each time the monitor is evaluated and stored in Keep Alive Memory (KAM). This normally occurs each driving cycle. The MIL is illuminated and a DTC is stored based on the New Average store in KAM.

In order to facilitate repair verification and DDV demonstration, 2 different filter constants are used. A "fast filter constant" is used after KAM is cleared/DTCs are erased and a "normal filter constant" is used for normal customer driving. The "fast filter" is used for 2 driving cycles after KAM is cleared/DTCs are erased, and then the "normal filter" is used. The "fast filter" allows for easy repair verification and monitor demonstration in 2 driving cycles, while the normal filter is used to allow up to 6 driving cycles, on average, to properly identify a malfunction and illuminate the MIL.

In order to relate filter constants to driving cycles for MIL illumination, filter constants must be converted to time constants. The mathematical relationship is described below:

```
Time constant = [ ( 1 / filter constant ) - 1 ] * evaluation period
```

The evaluation period is a driving cycle. The time constant is the time it takes to achieve 68% of a step-change to an input. Two time constants achieve 95% of a step change input.

I/M Readiness Code

The readiness function is implemented based on the J1979 format. Clearing codes using a scan tool results in the various I/M readiness bits being set to a "not-ready" condition. As each non-continuous monitor completes a full diagnostic check, the I/M readiness bit associated with that monitor is set to a "ready" condition. This may take one or two driving cycles based on whether malfunctions are detected or not.

Power Take Off Mode

While PTO mode is engaged, the I/M readiness bits are set to a "not-ready" condition. When PTO mode is disengaged, the I/M readiness bits are restored to their previous states prior to PTO engagement. During PTO mode, only CCM circuit checks continue to be performed.

Serial Data Link MIL Illumination

The OBD-II diagnostic communication messages utilize an industry standard 500 kbps CAN communication link.

The instrument cluster on some vehicles uses the same CAN data link to receive and display various types of information from the PCM. For example, the engine coolant temperature information displayed on the instrument cluster comes from the same ECT sensor used by the PCM for all its internal calculations.

These same vehicles use the CAN data link to illuminate the MIL rather than a circuit, hard-wired to the PCM. The PCM periodically sends the instrument cluster a message that tells it to turn on the MIL, turn off the MIL or blink the MIL. If the instrument cluster fails to receive a message within a 5-second timeout period, the instrument cluster itself illuminates the MIL. If communication is restored, the instrument cluster turns off the MIL after 5 seconds. Due to its limited capabilities, the instrument cluster does not generate or store Diagnostic Trouble Codes.

Calculated Load Value

LOAD_PCT (PID \$04) = <u>Current Calculated Torque</u> Maximum Engine Torque at conditions

Where:

- Current Calculation of torque is derived from the injected quantity of torque producing fuel and engine speed.
- Maximum Engine Torque is derived from the maximum curve.